We want the order to be deterministic on all platforms. NAKAMURA Takumi
fixed that in r181864. This patch is just two small cleanups:
* Move the function to the cpp file. It is only passed to array_pod_sort.
* Remove the ppc implementation which is now redundant
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181910 91177308-0d34-0410-b5e6-96231b3b80d8
This patch matches GCC behavior: the code used to only allow unaligned
load/store on ARM for v6+ Darwin, it will now allow unaligned load/store for
v6+ Darwin as well as for v7+ on other targets.
The distinction is made because v6 doesn't guarantee support (but LLVM assumes
that Apple controls hardware+kernel and therefore have conformant v6 CPUs),
whereas v7 does provide this guarantee (and Linux behaves sanely).
Overall this should slightly improve performance in most cases because of
reduced I$ pressure.
Patch by JF Bastien
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181897 91177308-0d34-0410-b5e6-96231b3b80d8
Now that applyFixup understands differently-sized fixups, we can define
fixup_ppc_lo16/fixup_ppc_lo16_ds/fixup_ppc_ha16 to properly be 2-byte
fixups, applied at an offset of 2 relative to the start of the
instruction text.
This has the benefit that if we actually need to generate a real
relocation record, its address will come out correctly automatically,
without having to fiddle with the offset in adjustFixupOffset.
Tested on both 64-bit and 32-bit PowerPC, using external and
integrated assembler.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181894 91177308-0d34-0410-b5e6-96231b3b80d8
The PPCAsmBackend::applyFixup routine handles the case where a
fixup can be resolved within the same object file. However,
this routine is currently hard-coded to assume the size of
any fixup is always exactly 4 bytes.
This is sort-of correct for fixups on instruction text; even
though it only works because several of what really would be
2-byte fixups are presented as 4-byte fixups instead (requiring
another hack in PPCELFObjectWriter::adjustFixupOffset to clean
it up).
However, this assumption breaks down completely for fixups
on data, which legitimately can be of any size (1, 2, 4, or 8).
This patch makes applyFixup aware of fixups of varying sizes,
introducing a new helper routine getFixupKindNumBytes (along
the lines of what the ARM back end does). Note that in order
to handle fixups of size 8, we also need to fix the return type
of adjustFixupValue to uint64_t to avoid truncation.
Tested on both 64-bit and 32-bit PowerPC, using external and
integrated assembler.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181891 91177308-0d34-0410-b5e6-96231b3b80d8
The transformation happening here is that we want to turn a
"mul(ext(X), ext(X))" into a "vmull(X, X)", stripping off the extension. We have
to make sure that X still has a valid vector type - possibly recreate an
extension to a smaller type. In case of a extload of a memory type smaller than
64 bit we used create a ext(load()). The problem with doing this - instead of
recreating an extload - is that an illegal type is exposed.
This patch fixes this by creating extloads instead of ext(load()) sequences.
Fixes PR15970.
radar://13871383
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181842 91177308-0d34-0410-b5e6-96231b3b80d8
The changes to CR spill handling missed a case for 32-bit PowerPC.
The code in PPCFrameLowering::processFunctionBeforeFrameFinalized()
checks whether CR spill has occurred using a flag in the function
info. This flag is only set by storeRegToStackSlot and
loadRegFromStackSlot. spillCalleeSavedRegisters does not call
storeRegToStackSlot, but instead produces MI directly. Thus we don't
see the CR is spilled when assigning frame offsets, and the CR spill
ends up colliding with some other location (generally the FP slot).
This patch sets the flag in spillCalleeSavedRegisters for PPC32 so
that the CR spill is properly detected and gets its own slot in the
stack frame.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181800 91177308-0d34-0410-b5e6-96231b3b80d8
Patch by: Alex Deucher
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
NOTE: This is a candidate for the 3.3 branch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181792 91177308-0d34-0410-b5e6-96231b3b80d8
The GNU assembler treats things like:
brasl %r14, 100
in the same way as:
brasl %r14, .+100
rather than as a branch to absolute address 100. We implemented this in
LLVM by creating an immediate operand rather than the usual expr operand,
and by handling immediate operands specially in the code emitter.
This was undesirable for (at least) three reasons:
- the specialness of immediate operands was exposed to the backend MC code,
rather than being limited to the assembler parser.
- in disassembly, an immediate operand really is an absolute address.
(Note that this means reassembling printed disassembly can't recreate
the original code.)
- it would interfere with any assembly manipulation that we might
try in future. E.g. operations like branch shortening can change
the relative position of instructions, but any code that updates
sym+offset addresses wouldn't update an immediate "100" operand
in the same way as an explicit ".+100" operand.
This patch changes the implementation so that the assembler creates
a "." label for immediate PC-relative operands, so that the operand
to the MCInst is always the absolute address. The patch also adds
some error checking of the offset.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181773 91177308-0d34-0410-b5e6-96231b3b80d8
Marking instructions as isAsmParserOnly stops them from being disassembled.
However, in cases where separate asm and codegen versions exist, we actually
want to disassemble to the asm ones.
No functional change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181772 91177308-0d34-0410-b5e6-96231b3b80d8
The SystemZ port currently relies on the order of the instruction operands
matching the order of the instruction field lists. This isn't desirable
for disassembly, where the two are matched only by name. E.g. the R1 and R2
fields of an RR instruction should have corresponding R1 and R2 operands.
The main complication is that addresses are compound operands,
and as far as I know there is no mechanism to allow individual
suboperands to be selected by name in "let Inst{...} = ..." assignments.
Luckily it doesn't really matter though. The SystemZ instruction
encoding groups all address fields together in a predictable order,
so it's just as valid to see the entire compound address operand as
a single field. That's the approach taken in this patch.
Matching by name in turn means that the operands to COPY SIGN and
CONVERT TO FIXED instructions can be given in natural order.
(It was easier to do this at the same time as the rename,
since otherwise the intermediate step was too confusing.)
No functional change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181771 91177308-0d34-0410-b5e6-96231b3b80d8
The SystemZ port currently relies on the order of the instruction operands
matching the order of the instruction field lists. This isn't desirable
for disassembly, where the two are matched only by name. E.g. the R1 and R2
fields of an RR instruction should have corresponding R1 and R2 operands.
The main complication is that addresses are compound operands,
and as far as I know there is no mechanism to allow individual
suboperands to be selected by name in "let Inst{...} = ..." assignments.
Luckily it doesn't really matter though. The SystemZ instruction
encoding groups all address fields together in a predictable order,
so it's just as valid to see the entire compound address operand as
a single field. That's the approach taken in this patch.
Matching by name in turn means that the operands to COPY SIGN and
CONVERT TO FIXED instructions can be given in natural order.
(It was easier to do this at the same time as the rename,
since otherwise the intermediate step was too confusing.)
No functional change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181769 91177308-0d34-0410-b5e6-96231b3b80d8
Mips16/32 floating point interoperability.
When Mips16 code calls external functions that would normally have some
of its parameters or return values passed in floating point registers,
it needs (Mips32) helper functions to do this because while in Mips16 mode
there is no ability to access the floating point registers.
In Pic mode, this is done with a set of predefined functions in libc.
This case is already handled in llvm for Mips16.
In static relocation mode, for efficiency reasons, the compiler generates
stubs that the linker will use if it turns out that the external function
is a Mips32 function. (If it's Mips16, then it does not need the helper
stubs).
These stubs are identically named and the linker knows about these tricks
and will not create multiple copies and will delete them if they are not
needed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181753 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds alias for addiu instruction which enables following syntax:
addiu $rs,imm
The macro is translated as:
addiu $rs,$rs,imm
Contributer: Vladimir Medic
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181729 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes warning messages observed in the oggenc application test in
projects/test-suite. Special handling is needed for the 64-bit
PowerPC SVR4 ABI when a constant is initialized with a pointer to a
function in a shared library. Because a function address is
implemented as the address of a function descriptor, the use of copy
relocations can lead to problems with initialization. GNU ld
therefore replaces copy relocations with dynamic relocations to be
resolved by the dynamic linker. This means the constant cannot reside
in the read-only data section, but instead belongs in .data.rel.ro,
which is designed for constants containing dynamic relocations.
The implementation creates a class PPC64LinuxTargetObjectFile
inheriting from TargetLoweringObjectFileELF, which behaves like its
parent except to place constants of this sort into .data.rel.ro.
The test case is reduced from the oggenc application.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181723 91177308-0d34-0410-b5e6-96231b3b80d8
This option is used when the user wants to avoid emitting double precision FP
loads and stores. Double precision FP loads and stores are expanded to single
precision instructions after register allocation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181718 91177308-0d34-0410-b5e6-96231b3b80d8
return values are bitcasts.
The chain had previously been being clobbered with the entry node to
the dag, which sometimes caused other code in the function to be
erroneously deleted when tailcall optimization kicked in.
<rdar://problem/13827621>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181696 91177308-0d34-0410-b5e6-96231b3b80d8
It was just a less powerful and more confusing version of
MCCFIInstruction. A side effect is that, since MCCFIInstruction uses
dwarf register numbers, calls to getDwarfRegNum are pushed out, which
should allow further simplifications.
I left the MachineModuleInfo::addFrameMove interface unchanged since
this patch was already fairly big.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181680 91177308-0d34-0410-b5e6-96231b3b80d8
To add a frame now there is a dedicated addFrameMove which also takes
care of constructing the move itself.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181657 91177308-0d34-0410-b5e6-96231b3b80d8
mips16/mips32 floating point interoperability.
This patch fixes returns from mips16 functions so that if the function
was in fact called by a mips32 hard float routine, then values
that would have been returned in floating point registers are so returned.
Mips16 mode has no floating point instructions so there is no way to
load values into floating point registers.
This is needed when returning float, double, single complex, double complex
in the Mips ABI.
Helper functions in libc for mips16 are available to do this.
For efficiency purposes, these helper functions have a different calling
convention from normal Mips calls.
Registers v0,v1,a0,a1 are used to pass parameters instead of
a0,a1,a2,a3.
This is because v0,v1,a0,a1 are the natural registers used to return
floating point values in soft float. These values can then be moved
to the appropriate floating point registers with no extra cost.
The only register that is modified is ra in this call.
The helper functions make sure that the return values are in the floating
point registers that they would be in if soft float was not in effect
(which it is for mips16, though the soft float is implemented using a mips32
library that uses hard float).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181641 91177308-0d34-0410-b5e6-96231b3b80d8
The issue was that the MatchingInlineAsm and VariantID args to the
MatchInstructionImpl function weren't being set properly. Specifically, when
parsing intel syntax, the parser thought it was parsing inline assembly in the
at&t dialect; that will never be the case.
The crash was caused when the emitter tried to emit the instruction, but the
operands weren't set. When parsing inline assembly we only set the opcode, not
the operands, which is used to lookup the instruction descriptor.
rdar://13854391 and PR15945
Also, this commit reverts r176036. Now that we're correctly parsing the intel
syntax the pushad/popad don't match properly. I've reimplemented that fix using
a MnemonicAlias.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181620 91177308-0d34-0410-b5e6-96231b3b80d8
This commit implements the AsmParser for fnstart, fnend,
cantunwind, personality, handlerdata, pad, setfp, save, and
vsave directives.
This commit fixes some minor issue in the ARMELFStreamer:
* The switch back to corresponding section after the .fnend
directive.
* Emit the unwind opcode while processing .fnend directive
if there is no .handlerdata directive.
* Emit the unwind opcode to .ARM.extab while processing
.handlerdata even if .personality directive does not exist.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181603 91177308-0d34-0410-b5e6-96231b3b80d8
Patch by: Aaron Watry
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
Signed-off-by: Aaron Watry <awatry@gmail.com>
NOTE: This is a candidate for the 3.3 branch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181579 91177308-0d34-0410-b5e6-96231b3b80d8