MatchInstructionImpl() function.
These values are used by the ConvertToMCInst() function to index into the
ConversionTable. The values are also needed to call the GetMCInstOperandNum()
function.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163101 91177308-0d34-0410-b5e6-96231b3b80d8
For example, the ARM target does not have efficient ISel handling for vector
selects with scalar conditions. This patch adds a TLI hook which allows the
different targets to report which selects are supported well and which selects
should be converted to CF duting codegen prepare.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163093 91177308-0d34-0410-b5e6-96231b3b80d8
NEON domain conversion was too heavy-handed with its widened
registers, which could have stripped existing instructions of their
dependency, leaving them vulnerable to scheduling errors.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163070 91177308-0d34-0410-b5e6-96231b3b80d8
Thumb2 instructions are mostly constrained to rGPR, not tGPR which is
for Thumb1.
rdar://problem/12203728
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162968 91177308-0d34-0410-b5e6-96231b3b80d8
I have tested the fix, but have not been successfull in generating
a robust unit test. This can only be exposed through particular
register assignments.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162821 91177308-0d34-0410-b5e6-96231b3b80d8
This wasn't the right way to enforce ordering of atomics.
We are already setting the isVolatile bit on memory operands of atomic
operations which is good enough to enforce the correct ordering.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162732 91177308-0d34-0410-b5e6-96231b3b80d8
It is not safe to use normal LDR instructions because they may be
reordered by the scheduler. The ATOMIC_LDR pseudos have a mayStore flag
that prevents reordering.
Atomic loads are also prevented from participating in rematerialization
and load folding.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162713 91177308-0d34-0410-b5e6-96231b3b80d8
ARMConstantIslandPass expects this instruction to stay in the same basic
block as the jump table branch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162615 91177308-0d34-0410-b5e6-96231b3b80d8
It's not clear that they should be marked as such, but tbb formation
fails if t2LEApcrelJT is hoisted of of a loop.
This doesn't change the flags on these instructions,
UnmodeledSideEffects was already inferred from the missing pattern.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162603 91177308-0d34-0410-b5e6-96231b3b80d8
The ARM BL and BLX instructions don't have predicate operands, but the
thumb variants tBL and tBLX do.
The argument registers should be added as implicit uses.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162593 91177308-0d34-0410-b5e6-96231b3b80d8
Add these transformations to the existing add/sub ones:
(and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
(or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
(xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
The selects can then be transformed to a single predicated instruction
by peephole.
This transformation will make it possible to eliminate the ISD::CAND,
COR, and CXOR custom DAG nodes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162176 91177308-0d34-0410-b5e6-96231b3b80d8
PEI can't handle the pseudo-instructions. This can be removed when the
pseudo-instructions are replaced by normal predicated instructions.
Fixes PR13628.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162130 91177308-0d34-0410-b5e6-96231b3b80d8
It is not my plan to duplicate the entire ARM instruction set with
predicated versions. We need a way of representing predicated
instructions in SSA form without requiring a separate opcode.
Then the pseudo-instructions can go away.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162061 91177308-0d34-0410-b5e6-96231b3b80d8
Without fastcc support, the caller just falls through to CallingConv::C
for fastcc, but callee still uses fastcc, this inconsistency of calling
convention is a problem, and fastcc support can fix it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162013 91177308-0d34-0410-b5e6-96231b3b80d8
The ARM select instructions are just predicated moves. If the select is
the only use of an operand, the instruction defining the operand can be
predicated instead, saving one instruction and decreasing register
pressure.
This implementation can turn AND/ORR/EOR instructions into their
corresponding ANDCC/ORRCC/EORCC variants. Ideally, we should be able to
predicate any instruction, but we don't yet support predicated
instructions in SSA form.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161994 91177308-0d34-0410-b5e6-96231b3b80d8
When predicating this instruction:
Rd = ADD Rn, Rm
We need an extra operand to represent the value given to Rd when the
predicate is false:
Rd = ADDCC Rfalse, Rn, Rm, pred
The Rd and Rfalse operands are different registers while in SSA form.
Rfalse is tied to Rd to make sure they get the same register during
register allocation.
Previously, Rd and Rn were tied, but that is not required.
Compare to MOVCC:
Rd = MOVCC Rfalse, Rtrue, pred
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161955 91177308-0d34-0410-b5e6-96231b3b80d8
reversed. This leads to wrong codegen for float-to-half conversion
intrinsics which are used to support storage-only fp16 type.
NEON variants of same instructions are fine.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161907 91177308-0d34-0410-b5e6-96231b3b80d8
Refactor the TableGen'erated fixed length disassemblmer to use a
table-driven state machine rather than a massive set of nested
switch() statements.
As a result, the ARM Disassembler (ARMDisassembler.cpp) builds much more
quickly and generates a smaller end result. For a Release+Asserts build on
a 16GB 3.4GHz i7 iMac w/ SSD:
Time to compile at -O2 (averaged w/ hot caches):
Previous: 35.5s
New: 8.9s
TEXT size:
Previous: 447,251
New: 297,661
Builds in 25% of the time previously required and generates code 66% of
the size.
Execution time of the disassembler is only slightly slower (7% disassembling
10 million ARM instructions, 19.6s vs 21.0s). The new implementation has
not yet been tuned, however, so the performance should almost certainly
be recoverable should it become a concern.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161888 91177308-0d34-0410-b5e6-96231b3b80d8