(yes, this is different from R_ARM_CALL)
- Adds a new method getARMBranchTargetOpValue() which handles the
necessary distinction between the conditional and unconditional br/bl
needed for ARM/ELF
At least for ARM mode, the needed fixup for conditional versus unconditional
br/bl is identical, but the ARM docs and existing ARM tools expect this
reloc type...
Added a few FIXME's for future naming fixups in ARMInstrInfo.td
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@124895 91177308-0d34-0410-b5e6-96231b3b80d8
auto-simplifier). This has a big impact on Ada code, but not much else.
Unfortunately the impact is mostly negative! This is due to PR9004 (aka
SCCP failing to resolve conditional branch conditions in the destination
blocks of the branch), in which simple correlated expressions are not
resolved but complicated ones are, so simplifying has a bad effect!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@124788 91177308-0d34-0410-b5e6-96231b3b80d8
Reversing the operands allows us to fold, but doesn't force us to. Also, at
this point the DAG is still being optimized, so the check for hasOneUse is not
very precise.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@124773 91177308-0d34-0410-b5e6-96231b3b80d8
overflow (nsw flag), which was disabled because it breaks 254.gap. I have
informed the GAP authors of the mistake in their code, and arranged for the
testsuite to use -fwrapv when compiling this benchmark.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@124746 91177308-0d34-0410-b5e6-96231b3b80d8
This makes the job of the later optzn passes easier, allowing the vast amount of
icmp transforms to chew on it.
We transform 840 switches in gcc.c, leading to a 16k byte shrink of the resulting
binary on i386-linux.
The testcase from README.txt now compiles into
decl %edi
cmpl $3, %edi
sbbl %eax, %eax
andl $1, %eax
ret
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@124724 91177308-0d34-0410-b5e6-96231b3b80d8
the load, then it may be legal to transform the load and store to integer
load and store of the same width.
This is done if the target specified the transformation as profitable. e.g.
On arm, this can transform:
vldr.32 s0, []
vstr.32 s0, []
to
ldr r12, []
str r12, []
rdar://8944252
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@124708 91177308-0d34-0410-b5e6-96231b3b80d8
to do this and more, but would only do it if X/Y had only one use. Spotted as the
most common missed simplification in SPEC by my auto-simplifier, now that it knows
about nuw/nsw/exact flags. This removes a bunch of multiplications from 447.dealII
and 483.xalancbmk. It also removes a lot from tramp3d-v4, which results in much
more inlining.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@124560 91177308-0d34-0410-b5e6-96231b3b80d8
This happens all the time when a smul is promoted to a larger type.
On x86-64 we now compile "int test(int x) { return x/10; }" into
movslq %edi, %rax
imulq $1717986919, %rax, %rax
movq %rax, %rcx
shrq $63, %rcx
sarq $34, %rax <- used to be "shrq $32, %rax; sarl $2, %eax"
addl %ecx, %eax
This fires 96 times in gcc.c on x86-64.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@124559 91177308-0d34-0410-b5e6-96231b3b80d8
benchmarks, and that it can be simplified to X/Y. (In general you can only
simplify (Z*Y)/Y to Z if the multiplication did not overflow; if Z has the
form "X/Y" then this is the case). This patch implements that transform and
moves some Div logic out of instcombine and into InstructionSimplify.
Unfortunately instcombine gets in the way somewhat, since it likes to change
(X/Y)*Y into X-(X rem Y), so I had to teach instcombine about this too.
Finally, thanks to the NSW/NUW flags, sometimes we know directly that "Z*Y"
does not overflow, because the flag says so, so I added that logic too. This
eliminates a bunch of divisions and subtractions in 447.dealII, and has good
effects on some other benchmarks too. It seems to have quite an effect on
tramp3d-v4 but it's hard to say if it's good or bad because inlining decisions
changed, resulting in massive changes all over.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@124487 91177308-0d34-0410-b5e6-96231b3b80d8
operand being factorized (and erased) could occur several times in Ops,
resulting in freed memory being used when the next occurrence in Ops was
analyzed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@124287 91177308-0d34-0410-b5e6-96231b3b80d8