When set, this bit indicates that a register is completely defined by
the value of its sub-registers.
Use the CoveredBySubRegs property to infer which super-registers are
call-preserved given a list of callee-saved registers. For example, the
ARM registers D8-D15 are callee-saved. This now automatically implies
that Q4-Q7 are call-preserved.
Conversely, Win64 callees save XMM6-XMM15, but the corresponding
YMM6-YMM15 registers are not call-preserved because they are not fully
defined by their sub-registers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148363 91177308-0d34-0410-b5e6-96231b3b80d8
Targets can now add CalleeSavedRegs defs to their *CallingConv.td file.
TableGen will use this to create a *_SaveList array suitable for
returning from getCalleeSavedRegs() as well as a *_RegMask bit mask
suitable for returning from getCallPreservedMask().
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148346 91177308-0d34-0410-b5e6-96231b3b80d8
This lets lldb give sane output for SmallVectors, e.g.
Before:
(lldb) p sv
(llvm::SmallVector<int, 10>) $0 = {
(llvm::SmallVectorImpl<int>) llvm::SmallVectorImpl<int> = {
(llvm::SmallVectorTemplateBase<int>) llvm::SmallVectorTemplateBase<int> = {
(llvm::SmallVectorTemplateCommon<int>) llvm::SmallVectorTemplateCommon<int> = {
(llvm::SmallVectorBase) llvm::SmallVectorBase = {
(void *) BeginX = 0x00007fff5fbff960
...
}
After:
(lldb) p sv
(llvm::SmallVector<int, 10>) $0 = {
(int) [0] = 42
(int) [1] = 23
...
}
The script is still a bit rough so expect crashes for vectors of complex types.
Synthetic children are _not_ available in xcode 4.2, newer LLDBs should work though.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148308 91177308-0d34-0410-b5e6-96231b3b80d8
(This time I believe I've checked all the -Wreturn-type warnings from GCC & added the couple of llvm_unreachables necessary to silence them. If I've missed any, I'll happily fix them as soon as I know about them)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148262 91177308-0d34-0410-b5e6-96231b3b80d8
The code type was always identical to a string anyway. Now it is simply
a synonym. The code literal syntax [{...}] is still valid.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148092 91177308-0d34-0410-b5e6-96231b3b80d8
AsmParser holds info specific to target parser.
AsmParserVariant holds info specific to asm variants supported by the target.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147787 91177308-0d34-0410-b5e6-96231b3b80d8
/// FastEmit_f - This method is called by target-independent code
/// to request that an instruction with the given type, opcode, and
/// floating-point immediate operand be emitted.
virtual unsigned FastEmit_f(MVT VT,
MVT RetVT,
unsigned Opcode,
const ConstantFP *FPImm);
Currently, it emits an accidentally overloaded version without the const on the
ConstantFP*. This doesn't affect anything in the tree, since nothing causes that
method to be autogenerated, but I have been playing with some ARM TableGen
refactorings that hit this problem.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147727 91177308-0d34-0410-b5e6-96231b3b80d8
tblgen has been renamed to llvm-tblgen so this command has been failing,
and it's no longer needed because llvm-tblgen is already installed by default.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147187 91177308-0d34-0410-b5e6-96231b3b80d8
Diagnostics are now emitted via the SourceMgr and we use MemoryBuffer
for buffer management. Switched the code to make use of the trailing
'0' that MemoryBuffer guarantees where it makes sense.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147063 91177308-0d34-0410-b5e6-96231b3b80d8
Use information computed while inferring new register classes to emit
accurate, table-driven implementations of getMatchingSuperRegClass().
Delete the old manual, error-prone implementations in the targets.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146873 91177308-0d34-0410-b5e6-96231b3b80d8
Teach TableGen to create the missing register classes needed for
getMatchingSuperRegClass() to return maximal results. The function is
still not auto-generated, so it still returns inexact results.
This produces these new register classes:
ARM:
QQPR_with_dsub_0_in_DPR_8
QQQQPR_with_dsub_0_in_DPR_8
X86:
GR64_with_sub_32bit_in_GR32_NOAX
GR64_with_sub_32bit_in_GR32_NOAX_and_GR32_NOSP
GR64_with_sub_16bit_in_GR16_NOREX
GR64_with_sub_32bit_in_GR32_NOAX_and_GR32_NOREX
GR64_TC_and_GR64_with_sub_32bit_in_GR32_NOAX
GR64_with_sub_32bit_in_GR32_NOAX_and_GR32_NOREX_NOSP
GR64_TCW64_and_GR64_with_sub_32bit_in_GR32_NOAX
GR64_TC_and_GR64_with_sub_32bit_in_GR32_NOAX_and_GR32_NOREX
GR64_with_sub_32bit_in_GR32_TC
GR64_with_sub_32bit_in_GR32_ABCD_and_GR32_NOAX
GR64_with_sub_32bit_in_GR32_NOAX_and_GR32_TC
GR64_with_sub_32bit_in_GR32_AD
GR64_with_sub_32bit_in_GR32_AD_and_GR32_NOAX
The other targets in the tree are not weird enough to be affected.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146872 91177308-0d34-0410-b5e6-96231b3b80d8
The function TRI::getCommonSubClass(A, B) returns the largest common
sub-class of the register classes A and B. This patch teaches TableGen
to synthesize sub-classes such that the answer is always maximal.
In other words, every register that is in both A and B will also be
present in getCommonSubClass(A, B).
This introduces these synthetic register classes:
ARM:
GPRnopc_and_hGPR
GPRnopc_and_hGPR
hGPR_and_rGPR
GPRnopc_and_hGPR
GPRnopc_and_hGPR
hGPR_and_rGPR
tGPR_and_tcGPR
hGPR_and_tcGPR
X86:
GR32_NOAX_and_GR32_NOSP
GR32_NOAX_and_GR32_NOREX
GR64_NOSP_and_GR64_TC
GR64_NOSP_and_GR64_TC
GR64_NOREX_and_GR64_TC
GR32_NOAX_and_GR32_NOSP
GR32_NOAX_and_GR32_NOREX
GR32_NOAX_and_GR32_NOREX_NOSP
GR64_NOSP_and_GR64_TC
GR64_NOREX_and_GR64_TC
GR64_NOREX_NOSP_and_GR64_TC
GR32_NOAX_and_GR32_NOSP
GR32_NOAX_and_GR32_NOREX
GR32_NOAX_and_GR32_NOREX_NOSP
GR32_ABCD_and_GR32_NOAX
GR32_NOAX_and_GR32_NOSP
GR32_NOAX_and_GR32_NOREX
GR32_NOAX_and_GR32_NOREX_NOSP
GR32_ABCD_and_GR32_NOAX
GR32_NOAX_and_GR32_TC
GR32_NOAX_and_GR32_NOSP
GR64_NOSP_and_GR64_TC
GR32_NOAX_and_GR32_NOREX
GR32_NOAX_and_GR32_NOREX_NOSP
GR64_NOREX_and_GR64_TC
GR64_NOREX_NOSP_and_GR64_TC
GR32_ABCD_and_GR32_NOAX
GR64_ABCD_and_GR64_TC
GR32_NOAX_and_GR32_TC
GR32_AD_and_GR32_NOAX
Other targets are unaffected.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146657 91177308-0d34-0410-b5e6-96231b3b80d8
subdirectories to traverse into.
- Originally I wanted to avoid this and just autoscan, but this has one key
flaw in that new subdirectories can not automatically trigger a rerun of the
llvm-build tool. This is particularly a pain when switching back and forth
between trees where one has added a subdirectory, as the dependencies will
tend to be wrong. This will also eliminates FIXME implicitly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146436 91177308-0d34-0410-b5e6-96231b3b80d8
For example, ARM allows:
vmov.u32 s4, #0 -> vmov.i32, #0
'u32' is a more specific designator for the 32-bit integer type specifier
and is legal for any instruction which accepts 'i32' as a datatype suffix.
We want to say,
def : TokenAlias<".u32", ".i32">;
This works by marking the match class of 'From' as a subclass of the
match class of 'To'.
rdar://10435076
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145992 91177308-0d34-0410-b5e6-96231b3b80d8
1. Added opcode BUNDLE
2. Taught MachineInstr class to deal with bundled MIs
3. Changed MachineBasicBlock iterator to skip over bundled MIs; added an iterator to walk all the MIs
4. Taught MachineBasicBlock methods about bundled MIs
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145975 91177308-0d34-0410-b5e6-96231b3b80d8
When wait() has finished, opened handles (especially writing stdout to file) might not be released immediately.
To wait for released, poll to attempt renaming.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145222 91177308-0d34-0410-b5e6-96231b3b80d8
properly quote strings when writing the CMakeFiles/Makefile.cmake output file
(which lists the dependencies). This shows up when using CMake + MSYS Makefile
generator.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@144873 91177308-0d34-0410-b5e6-96231b3b80d8
- Can be used to generate the substitution values we currently use for the various target related .def files.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@144345 91177308-0d34-0410-b5e6-96231b3b80d8
handle defining the "magic" target related components (like native,
nativecodegen, and engine).
- We still require these components to be in the project (currently in
lib/Target) so that we have a place to document them and hopefully make it
more obvious that they are "magic".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@144253 91177308-0d34-0410-b5e6-96231b3b80d8
- Currently we require that all references between components (except the parent relation) fit into a DAG -- this could be relaxed later if it ever proves to be useful.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@143623 91177308-0d34-0410-b5e6-96231b3b80d8
one aspect of them by having them use the (annoying, if not broken)
proper library dependency model for adding the LLVMTableGen library as
a dependency. This could manifest as a link order issue in the presence
of separate LLVM / Clang source builds with CMake and a linker that
really cares about such things.
Also, add the Support dependency to llvm-tblgen itself so that it
doesn't rely on TableGen's transitive Support dependency. A parallel
change for clang-tblgen will be forthcoming.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@143531 91177308-0d34-0410-b5e6-96231b3b80d8
For example,
On ARM, "mov r3, #-3" is an alias for "mvn r3, #2", so we want to use a
matcher pattern that handles the bitwise negation when mapping to t2MVNi.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@143233 91177308-0d34-0410-b5e6-96231b3b80d8
If the register class in the source alias is a subclass of the register class
of the actual instruction, the alias can still match OK since the constraints
are strictly a subset of what the instruction can actually handle.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@143200 91177308-0d34-0410-b5e6-96231b3b80d8
Next step in the ongoing saga of NEON load/store assmebly parsing. Handle
VLD1 instructions that take a two-register register list.
Adjust the instruction definitions to only have the single encoded register
as an operand. The super-register from the pseudo is kept as an implicit def,
so passes which come after pseudo-expansion still know that the instruction
defines the other subregs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@142670 91177308-0d34-0410-b5e6-96231b3b80d8
the last compiler built for the previous flavour is used for the next,
for example the Debug clang compiler was being used for the initial build
of the Release LLVM. Flavors should be independent of each other. This
especially matters if the compiler built for the previous flavour doesn't
actually work!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@142607 91177308-0d34-0410-b5e6-96231b3b80d8
In fact this commit is not intended to change anything unless you
use one of the new command line flags.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@142577 91177308-0d34-0410-b5e6-96231b3b80d8
NEON immediates are "interesting". Start of the work to handle parsing them
in an 'as' compatible manner. Getting the matcher to play nicely with
these and the floating point immediates from VFP is an extra fun wrinkle.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@142293 91177308-0d34-0410-b5e6-96231b3b80d8
This removes support for building llvm-gcc. It will eventually add support for
building other projects.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@142165 91177308-0d34-0410-b5e6-96231b3b80d8