This should complete the job started in r231794 and continued in r232045:
We want to replace as much custom x86 shuffling via intrinsics
as possible because pushing the code down the generic shuffle
optimization path allows for better codegen and less complexity
in LLVM.
AVX2 introduced proper integer variants of the hacked integer insert/extract
C intrinsics that were created for this same functionality with AVX1.
This should complete the removal of insert/extract128 intrinsics.
The Clang precursor patch for this change was checked in at r232109.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232120 91177308-0d34-0410-b5e6-96231b3b80d8
Instead print them as part of the $dst operand. The AsmMatcher
requires the 32-bit and 64-bit encodings have the same mnemonic in
order to parse them correctly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232105 91177308-0d34-0410-b5e6-96231b3b80d8
The permps and permd instructions have their operands swapped compared to the
intrinsic definition. Therefore, they do not fall into the INTR_TYPE_2OP
category.
I did not create a new category for those two, as they are the only one AFAICT
in that case.
<rdar://problem/20108262>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232085 91177308-0d34-0410-b5e6-96231b3b80d8
Part of the folding logic implemented by function 'PerformISDSETCCCombine'
only worked under the assumption that the condition code in input could have
been either SETNE or SETEQ.
Unfortunately that assumption was incorrect, and in some cases the algorithm
ended up incorrectly folding SETCC nodes.
The incorrect folding only affected SETCC dag nodes where:
- one of the operands was a build_vector of all zeroes;
- the other operand was a SIGN_EXTEND from a vector of MVT:i1 elements;
- the condition code was neither SETNE nor SETEQ.
Example:
(setcc (v4i32 (sign_extend v4i1:%A)), (v4i32 VectorOfAllZeroes), setge)
Before this patch, the entire dag node sequence from the example was
incorrectly folded to node %A.
With this patch, the dag node sequence is folded to a
(xor %A, (v4i1 VectorOfAllOnes)).
Added test setcc-combine.ll.
Thanks to Greg Bedwell for spotting this issue.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232046 91177308-0d34-0410-b5e6-96231b3b80d8
Now that we've replaced the vinsertf128 intrinsics,
do the same for their extract twins.
This is very much like D8086 (checked in at r231794):
We want to replace as much custom x86 shuffling via intrinsics
as possible because pushing the code down the generic shuffle
optimization path allows for better codegen and less complexity
in LLVM.
This is also the LLVM sibling to the cfe D8275 patch.
Differential Revision: http://reviews.llvm.org/D8276
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232045 91177308-0d34-0410-b5e6-96231b3b80d8
It's firstly committed at r231630, and reverted at r231635.
Function pass InstructionSimplifier is inserted as barrier to
make sure loop unroll pass won't affect on LICM pass.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232011 91177308-0d34-0410-b5e6-96231b3b80d8
Instead, run both EH preparation passes, and have them both ignore
functions with unrecognized EH personalities. Pass delegation involved
some hacky code for creating an AnalysisResolver that we don't need now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231995 91177308-0d34-0410-b5e6-96231b3b80d8
CodeGen incorrectly ignores (assert from APInt) constant index bigger
than 2^64 in getelementptr instruction. This is a test and fix for that.
Patch by Paweł Bylica!
Reviewed By: rnk
Subscribers: majnemer, rnk, mcrosier, resistor, llvm-commits
Differential Revision: http://reviews.llvm.org/D8219
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231984 91177308-0d34-0410-b5e6-96231b3b80d8
If a function is going in an unique section (because of -ffunction-sections
for example), putting a jump table in .rodata will keep .rodata alive and
that will keep alive any other function that also has a jump table.
Instead, put the jump table in a unique section that is associated with the
function.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231961 91177308-0d34-0410-b5e6-96231b3b80d8
The main issue being fixed here is that APCS targets handling a "byval align N"
parameter with N > 4 were miscounting what objects were where on the stack,
leading to FrameLowering setting the frame pointer incorrectly and clobbering
the stack.
But byval handling had grown over many years, and had multiple layers of cruft
trying to compensate for each other and calculate padding correctly. This only
really needs to be done once, in the HandleByVal function. Elsewhere should
just do what it's told by that call.
I also stripped out unnecessary APCS/AAPCS distinctions (now that Clang emits
byvals with the correct C ABI alignment), which simplified HandleByVal.
rdar://20095672
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231959 91177308-0d34-0410-b5e6-96231b3b80d8
DW_AT_low_pc on functions is taken care of by the relocation processing, but
DW_AT_high_pc and DW_AT_low_pc on other lexical scopes need special handling.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231955 91177308-0d34-0410-b5e6-96231b3b80d8
This is a follow-up to r231182. This adds the "vbroadcasti128" instruction
back, but without the intrinsic mapping. Also add a test to check the
instriction encoding.
This is related to rdar://problem/18742778.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231945 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
The generic ELF TargetObjectFile defaults to .ctors, but Linux's
defaults to .init_array by calling InitializeELF with the value of
UseInitArray from TargetMachine. Make NaCl's behavior match.
Reviewers: jvoung
Differential Revision: http://reviews.llvm.org/D8240
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231934 91177308-0d34-0410-b5e6-96231b3b80d8
As of r231908, the test I added in r231902 actually gets run - but I'd
checked in a stale version of the input so it didn't pass. Fix the
input and un-xfail the test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231911 91177308-0d34-0410-b5e6-96231b3b80d8
This causes a crash if the referenced intrinsic was malformed. In this case, we
would already have reported an error on the referenced intrinsic, but then
crashed on the second one when it tried to introspect the first without
error checking.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231910 91177308-0d34-0410-b5e6-96231b3b80d8
There were also errors in the CHECK line which I fixed and the test
doesn't actually pass as the "100" is in the wrong line. Not sure
whether this is a test failure or a coverage failure so making the test
XFAIL for now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231908 91177308-0d34-0410-b5e6-96231b3b80d8
Should bring the cygwin bots back.
I added a triple to the test that was failing so that it would have failed
on Linux.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231882 91177308-0d34-0410-b5e6-96231b3b80d8
Given that large parts of inst combine is restricted to instructions which have one use, getting rid of a use on the condition can help the effectiveness of the optimizer. Also, it allows the condition to potentially be deleted by instcombine rather than waiting for another pass.
I noticed this completely by accident in another test case. It's not anything that actually came from a real workload.
p.s. We should probably do the same thing for switch instructions.
Differential Revision: http://reviews.llvm.org/D8220
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231881 91177308-0d34-0410-b5e6-96231b3b80d8
There are still 4 tests that check for DW_AT_MIPS_linkage_name,
because they specify DWARF 2 or 3 in the module metadata. So, I didn't
create an explicit version-based test for the attribute.
Differential Revision: http://reviews.llvm.org/D8227
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231880 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds limited support in ValueTracking for inferring known bits of a value from conditional expressions which must be true to reach the instruction we're trying to optimize. At this time, the feature is off by default. Once landed, I'm hoping for feedback from others on both profitability and compile time impact.
Forms of conditional value propagation have been tried in LLVM before and have failed due to compile time problems. In an attempt to side step that, this patch only considers conditions where the edge leaving the branch dominates the context instruction. It does not attempt full dataflow. Even with that restriction, it handles many interesting cases:
* Early exits from functions
* Early exits from loops (for context instructions in the loop and after the check)
* Conditions which control entry into loops, including multi-version loops (such as those produced during vectorization, IRCE, loop unswitch, etc..)
Possible applications include optimizing using information provided by constructs such as: preconditions, assumptions, null checks, & range checks.
This patch implements two approaches to the problem that need further benchmarking. Approach 1 is to directly walk the dominator tree looking for interesting conditions. Approach 2 is to inspect other uses of the value being queried for interesting comparisons. From initial benchmarking, it appears that Approach 2 is faster than Approach 1, but this needs to be further validated.
Differential Revision: http://reviews.llvm.org/D7708
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231879 91177308-0d34-0410-b5e6-96231b3b80d8
- Use TargetLowering to check for the actual cost of each extension.
- Provide a factorized method to check for the cost of an extension:
TargetLowering::isExtFree.
- Provide a virtual method TargetLowering::isExtFreeImpl for targets to be able
to tune the cost of non-free extensions.
This refactoring offers a better granularity to model what really happens on
different targets.
No performance changes and very few code differences.
Part of <rdar://problem/19267165>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231855 91177308-0d34-0410-b5e6-96231b3b80d8
This adds new node types for each intrinsic.
For instance, for addv, we have AArch64ISD::UADDV, such that:
(v4i32 (uaddv ...))
is the same as
(v4i32 (scalar_to_vector (i32 (int_aarch64_neon_uaddv ...))))
that is,
(v4i32 (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)),
(i32 (int_aarch64_neon_uaddv ...)), ssub)
In a combine, we transform all such across-vector-lanes intrinsics to:
(i32 (extract_vector_elt (uaddv ...), 0))
This has one big advantage: by making the extract_element explicit, we
enable the existing patterns for lane-aware instructions to fire.
This lets us avoid needlessly going through the GPRs. Consider:
uint32x4_t test_mul(uint32x4_t a, uint32x4_t b) {
return vmulq_n_u32(a, vaddvq_u32(b));
}
We now generate:
addv.4s s1, v1
mul.4s v0, v0, v1[0]
instead of the previous:
addv.4s s1, v1
fmov w8, s1
dup.4s v1, w8
mul.4s v0, v1, v0
rdar://20044838
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231840 91177308-0d34-0410-b5e6-96231b3b80d8
Follow up from r231505.
Fix the non-determinism by using a MapVector and reintroduce the AArch64
testcase. Defer deleting the got candidates up to the end and remove
them in a bulk, avoiding linear time removal of each element.
Thanks to Renato Golin for trying it out on other platforms.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231830 91177308-0d34-0410-b5e6-96231b3b80d8
The dependences are now expose through the new getInterestingDependences
API so we can use that with -analyze too and fix the FIXME.
This lets us remove the test that relied on -debug to check the
dependences.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231807 91177308-0d34-0410-b5e6-96231b3b80d8
Also it extracts getCopyFromRegs helper function in SelectionDAGBuilder as we need to be able to customize type of the register exported from basic block during lowering of the gc.result.
(Resubmitting this change after not being able to reproduce buildbot failure)
Differential Revision: http://reviews.llvm.org/D7760
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231800 91177308-0d34-0410-b5e6-96231b3b80d8
We want to replace as much custom x86 shuffling via intrinsics
as possible because pushing the code down the generic shuffle
optimization path allows for better codegen and less complexity
in LLVM.
This is the sibling patch for the Clang half of this change:
http://reviews.llvm.org/D8088
Differential Revision: http://reviews.llvm.org/D8086
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231794 91177308-0d34-0410-b5e6-96231b3b80d8