Implement a BITCAST dag combine to transform i32->mmx conversion patterns
into a X86 specific node (MMX_MOVW2D) and guarantee that moves between
i32 and x86mmx are better handled, i.e., don't use store-load to do the
conversion..
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228293 91177308-0d34-0410-b5e6-96231b3b80d8
Avoid regression in previously supported MMX code by adding different
combinations of tests which exercise MMX bitcasts. Small improvements
to these patterns should come next.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228292 91177308-0d34-0410-b5e6-96231b3b80d8
Parts of llvm were not expecting it and we wouldn't print
the entity size of the section.
Given what comdats are used for, having SHF_MERGE sections would be
just a small improvement, so just disable it for now.
Fixes pr22463.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228196 91177308-0d34-0410-b5e6-96231b3b80d8
This associates movss and movsd with the packed single and packed double
execution domains (resp.). While this is largely cosmetic, as we now
don't have weird ping-pong-ing between single and double precision, it
is also useful because it avoids the domain fixing algorithm from seeing
domain breaks that don't actually exist. It will also be much more
important if we have an execution domain default other than packed
single, as that would cause us to mix movss and movsd with integer
vector code on a regular basis, a very bad mixture.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228135 91177308-0d34-0410-b5e6-96231b3b80d8
version of the script.
Changes include:
- Using the VEX prefix
- Skipping more detail when we have useful shuffle comments to match
- Matching more shuffle comments that have been added to the printer
(yay!)
- Matching the destination registers of some AVX instructions
- Stripping trailing whitespace that crept in
- Fixing indentation issues
Nothing interesting going on here. I'm just trying really hard to ensure
these changes don't show up in the diffs with actual changes to the
backend.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228132 91177308-0d34-0410-b5e6-96231b3b80d8
zero for v8i16 as well.
These exhibit the same domain badness, but also exhibit other weaknesses
in our blend lowering. More fixes to come.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228126 91177308-0d34-0410-b5e6-96231b3b80d8
This is the simplest form of bit-math based blending which only fires
when we are blending with zero and is relatively profitable. I've only
enabled this path on very specific lowering strategies. I'm planning to
widen its applicability in subsequent patches, but so far you'll notice
that even though we get fewer shufps instructions, we *still* do the bit
math in the FP execution port. I'm looking into why this is still
happening.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228124 91177308-0d34-0410-b5e6-96231b3b80d8
update_llc_test_checks.py.
The exact format of the checks has changed over time. This includes
different indenting rules, new shuffle comments that have been added,
and more operand hiding behind regular expressions.
No functional change to the tests are expected here, but this will make
subsequent patches have a clean diff as they change shuffle lowering.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228097 91177308-0d34-0410-b5e6-96231b3b80d8
update_llc_test_checks.py script uses, and refresh the checks in this
test.
No functionality changed here, just bringing this test up to work with
automated updates using the python script.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228096 91177308-0d34-0410-b5e6-96231b3b80d8
This will make it easy to update as I change some parts of the X86
backend, makes it more clear what instruction differences are
introduced, and I find it makes it a bit easier to read as well.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228095 91177308-0d34-0410-b5e6-96231b3b80d8
lowering. I'm prepping patches to improve these, and this will let the
delta of those patches show the improvement. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228044 91177308-0d34-0410-b5e6-96231b3b80d8
with 'stress' to indicate that the specific output isn't interesting and
relax them to only check the last instruction (a ret).
I've updated the one test case that really uses this to name the one
'stress_test' which was actually producing output we can directly check.
With this, the script doesn't introduce noise when run over the v16 test
file.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228033 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds general shuffle pattern matching for the MOVQ zero-extend instruction (copy lower 64bits, zero upper) for all 128-bit integer vectors, it is added as a fallback test in lowerVectorShuffleAsZeroOrAnyExtend.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228022 91177308-0d34-0410-b5e6-96231b3b80d8
This patch detects consecutive vector loads using the existing
EltsFromConsecutiveLoads() logic. This fixes:
http://llvm.org/bugs/show_bug.cgi?id=22329
This patch effectively reverts the tablegen additions of D6492 /
http://reviews.llvm.org/rL224344 ...which in hindsight were a horrible hack.
The test cases that were added with that patch are simply modified to load
from varying offsets of a base pointer. These loads did not match the existing
tablegen patterns.
A happy side effect of doing this optimization earlier is that we can now fold
the load into a math op where possible; this is shown in some of the updated
checks in the test file.
Differential Revision: http://reviews.llvm.org/D7303
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228006 91177308-0d34-0410-b5e6-96231b3b80d8
r224330 introduced a bug by misinterpreting the "FeatureVectorUAMem" bit.
The commit log says that change did not affect anything, but that's not correct.
That change allowed SSE instructions to have unaligned mem operands folded into
math ops, and that's not allowed in the default specification for any SSE variant.
The bug is exposed when compiling for an AVX-capable CPU that had this feature
flag but without enabling AVX codegen. Another mistake in r224330 was not adding
the feature flag to all AVX CPUs; the AMD chips were excluded.
This is part of the fix for PR22371 ( http://llvm.org/bugs/show_bug.cgi?id=22371 ).
This feature bit is SSE-specific, so I've renamed it to "FeatureSSEUnalignedMem".
Changed the existing test case for the feature bit to reflect the new name and
renamed the test file itself to better reflect the feature.
Added runs to fold-vex.ll to check for the failing codegen.
Note that the feature bit is not set by default on any CPU because it may require a
configuration register setting to enable the enhanced unaligned behavior.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227983 91177308-0d34-0410-b5e6-96231b3b80d8
This test was checking for lack of a "movaps" (an aligned load)
rather than a "movups" (an unaligned load). It also included
a store which complicated the checking.
Add specific CPU runs to prevent subtarget feature flag overrides
from inhibiting this optimization.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227972 91177308-0d34-0410-b5e6-96231b3b80d8
Improve EXTRACT_VECTOR_ELT DAG combine to catch conversion patterns
between x86mmx and i32 with more layers of indirection.
Before:
movq2dq %mm0, %xmm0
movd %xmm0, %eax
After:
movd %mm0, %eax
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227969 91177308-0d34-0410-b5e6-96231b3b80d8
LLVM ToT produces poor MMX code compared to 3.5. However, part of the previous
functionality can be achieved by using -x86-experimental-vector-widening-legalization.
Add tests to be sure we don't regress again.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227869 91177308-0d34-0410-b5e6-96231b3b80d8
This moves the transformation introduced in r223757 into a separate MI pass.
This allows it to cover many more cases (not only cases where there must be a
reserved call frame), and perform rudimentary call folding. It still doesn't
have a heuristic, so it is enabled only for optsize/minsize, with stack
alignment <= 8, where it ought to be a fairly clear win.
(Re-commit of r227728)
Differential Revision: http://reviews.llvm.org/D6789
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227752 91177308-0d34-0410-b5e6-96231b3b80d8
This moves the transformation introduced in r223757 into a separate MI pass.
This allows it to cover many more cases (not only cases where there must be a
reserved call frame), and perform rudimentary call folding. It still doesn't
have a heuristic, so it is enabled only for optsize/minsize, with stack
alignment <= 8, where it ought to be a fairly clear win.
Differential Revision: http://reviews.llvm.org/D6789
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227728 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds shuffle mask decodes for integer zero extends (pmovzx** and movq xmm,xmm) and scalar float/double loads/moves (movss/movsd).
Also adds shuffle mask decodes for integer loads (movd/movq).
Differential Revision: http://reviews.llvm.org/D7228
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227688 91177308-0d34-0410-b5e6-96231b3b80d8
In the large code model, we now put __chkstk in %r11 before calling it.
Refactor the code so that we only do this once. Simplify things by using
__chkstk_ms instead of __chkstk on cygming. We already use that symbol
in the prolog emission, and it simplifies our logic.
Second half of PR18582.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227519 91177308-0d34-0410-b5e6-96231b3b80d8
win64: Call __chkstk through a register with the large code model
Fixes half of PR18582. True dynamic allocas will still have a
CALL64pcrel32 which will fail.
Reviewers: majnemer
Differential Revision: http://reviews.llvm.org/D7267
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227503 91177308-0d34-0410-b5e6-96231b3b80d8
For large stack offsets the compiler generates multiple immediate mode
sub/add instructions in the prologue/epilogue. This patch makes the
compiler place the final amount to be added/subtracted into a register,
which is then added/substracted with a single operation.
Differential Revision: http://reviews.llvm.org/D7226
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227458 91177308-0d34-0410-b5e6-96231b3b80d8
ELF has support for sections that can be split into fixed size or
null terminated entities.
Since these sections can be split by the linker, it is not necessary
to split them in codegen.
This reduces the combined .o size in a llvm+clang build from
202,394,570 to 173,819,098 bytes.
The time for linking clang with gold (on a VM, on a laptop) goes
from 2.250089985 to 1.383001792 seconds.
The flip side is the size of rodata in clang goes from 10,926,785
to 10,929,345 bytes.
The increase seems to be because of http://sourceware.org/bugzilla/show_bug.cgi?id=17902.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227431 91177308-0d34-0410-b5e6-96231b3b80d8
If the personality is not a recognized MSVC personality function, this
pass delegates to the dwarf EH preparation pass. This chaining supports
people on *-windows-itanium or *-windows-gnu targets.
Currently this recognizes some personalities used by MSVC and turns
resume instructions into traps to avoid link errors. Even if cleanups
are not used in the source program, LLVM requires the frontend to emit a
code path that resumes unwinding after an exception. Clang does this,
and we get unreachable resume instructions. PR20300 covers cleaning up
these unreachable calls to resume.
Reviewers: majnemer
Differential Revision: http://reviews.llvm.org/D7216
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227405 91177308-0d34-0410-b5e6-96231b3b80d8
Reduce integer multiplication by a constant of the form k*2^c, where k is in {3,5,9} into a lea + shl. Previously it was only done for imulq on 64-bit platforms, but it makes sense for imull and 32-bit as well.
Differential Revision: http://reviews.llvm.org/D7196
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227308 91177308-0d34-0410-b5e6-96231b3b80d8
This includes two things:
1) Fix TCRETURNdi and TCRETURN64di patterns to check the right thing (LP64 as opposed to target bitness).
2) Allow LEA64_32 in MatchingStackOffset.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227307 91177308-0d34-0410-b5e6-96231b3b80d8
By Asaf Badouh and Elena Demikhovsky
Added special nodes for rounding: FMADD_RND, FMSUB_RND..
It will prevent merge between nodes with rounding and other standard nodes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227303 91177308-0d34-0410-b5e6-96231b3b80d8
This commit creates infinite loop in DAG combine for in the LLVM test-suite
for aarch64 with mcpu=cylcone (just having neon may be enough to expose this).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227272 91177308-0d34-0410-b5e6-96231b3b80d8
This patch resolves part of PR21711 ( http://llvm.org/bugs/show_bug.cgi?id=21711 ).
The 'f3' test case in that report presents a situation where we have two 128-bit
stores extracted from a 256-bit source vector.
Instead of producing this:
vmovaps %xmm0, (%rdi)
vextractf128 $1, %ymm0, 16(%rdi)
This patch merges the 128-bit stores into a single 256-bit store:
vmovups %ymm0, (%rdi)
Differential Revision: http://reviews.llvm.org/D7208
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227242 91177308-0d34-0410-b5e6-96231b3b80d8