Also added the testcase that should have been in r215194.
This behaviour has surprised me a few times now. The problem is that the
generated MipsSubtarget::ParseSubtargetFeatures() contains code like this:
if ((Bits & Mips::FeatureABICalls) != 0) IsABICalls = true;
so '-abicalls' means 'leave it at the default' and '+abicalls' means 'set it to
true'. In this case, (and the similar -modd-spreg case) I'd like the code to be
IsABICalls = (Bits & Mips::FeatureABICalls) != 0;
or possibly:
if ((Bits & Mips::FeatureABICalls) != 0)
IsABICalls = true;
else
IsABICalls = false;
and preferably arrange for 'Bits & Mips::FeatureABICalls' to be true by default
(on some triples).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215211 91177308-0d34-0410-b5e6-96231b3b80d8
For best-case performance on Cortex-A57, we should try to use a balanced mix of odd and even D-registers when performing a critical sequence of independent, non-quadword FP/ASIMD floating-point multiply or multiply-accumulate operations.
This pass attempts to detect situations where the register allocation may adversely affect this load balancing and to change the registers used so as to better utilize the CPU.
Ideally we'd just take each multiply or multiply-accumulate in turn and allocate it alternating even or odd registers. However, multiply-accumulates are most efficiently performed in the same functional unit as their accumulation operand. Therefore this pass tries to find maximal sequences ("Chains") of multiply-accumulates linked via their accumulation operand, and assign them all the same "color" (oddness/evenness).
This optimization affects S-register and D-register floating point multiplies and FMADD/FMAs, as well as vector (floating point only) muls and FMADD/FMA. Q register instructions (and 128-bit vector instructions) are not affected.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215199 91177308-0d34-0410-b5e6-96231b3b80d8
ARM bots (& others, I think, now that I look) were failing because we
were using incorrect printf-style format specifiers. They were wrong
on almost any platform, actually, just mostly harmlessly so.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215196 91177308-0d34-0410-b5e6-96231b3b80d8
GlobalOpt didn't know how to simulate InsertValueInst or
ExtractValueInst. Optimizing these is pretty straightforward.
N.B. This came up when looking at clang's IRGen for MS ABI member
pointers; they are represented as aggregates.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215184 91177308-0d34-0410-b5e6-96231b3b80d8
This completes one item from the todo-list of r215125 "Generate masking
instruction variants with tablegen".
The AddedComplexity is needed just like for the k variant.
Added a codegen test based on valignq.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215173 91177308-0d34-0410-b5e6-96231b3b80d8
The AddedComplexity is needed just like in avx512_perm_3src. There may be a
bug in the complexity computation...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215168 91177308-0d34-0410-b5e6-96231b3b80d8
__stack_chk_guard.
Handle the case where the pointer operand of the load instruction that loads the
stack guard is not a global variable but instead a bitcast.
%StackGuard = load i8** bitcast (i64** @__stack_chk_guard to i8**)
call void @llvm.stackprotector(i8* %StackGuard, i8** %StackGuardSlot)
Original test case provided by Ana Pazos.
This fixes PR20558.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215167 91177308-0d34-0410-b5e6-96231b3b80d8
Due to an unnecessary special case, inlined arguments that happened to
be from the same function as they were inlined into were misclassified
as non-inline arguments and would overwrite the non-inlined arguments.
Assert that we never overwrite a function's arguments, and stop
misclassifying inlined arguments as non-inline arguments to fix this
issue.
Excuse the rather crappy test case - handcrafted IR might do better, or
someone who understands better how to tickle the inliner to create a
recursive inlining situation like this (though it may also be necessary
to tickle the variable in a particular way to cause it to be recorded in
the MMI side table and go down this particular path for location
information).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215157 91177308-0d34-0410-b5e6-96231b3b80d8
a base GOT entry.
Summary:
get tip of tree mips fast-isel to pass test-suite
Two bugs were fixed:
1) one bit booleans were treated as 1 bit signed integers and so the literal '1' could become sign extended.
2) mips uses got for pic but in certain cases, as with string constants for example, many items can be referenced from the same got entry and this case was not handled properly.
Test Plan: test-suite
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: mcrosier
Differential Revision: http://reviews.llvm.org/D4801
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215155 91177308-0d34-0410-b5e6-96231b3b80d8
be deleted. This will be reapplied as soon as possible and before
the 3.6 branch date at any rate.
Approved by Jim Grosbach, Lang Hames, Rafael Espindola.
This reverts commits r215111, 215115, 215116, 215117, 215136.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215154 91177308-0d34-0410-b5e6-96231b3b80d8
Re-commit of r214832,r21469 with a work-around that
avoids the previous problem with gcc build compilers
The work-around is to use SmallVector instead of ArrayRef
of basic blocks in preservesResourceLen()/MachineCombiner.cpp
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215151 91177308-0d34-0410-b5e6-96231b3b80d8
MachOObjectFile::getArch(uint32_t CPUType, uint32_t CPUSubType) .
Upcoming changes will cause existing test cases to use this but
I wanted to check in this obvious change separately.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215150 91177308-0d34-0410-b5e6-96231b3b80d8
this case, the code path dealing with vector promotion was missing the explicit
checks for lifetime intrinsics that were present on the corresponding integer
promotion path.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215148 91177308-0d34-0410-b5e6-96231b3b80d8
C-style casts (and reinterpret_casts) result in implementation defined
values when a pointer is cast to a larger integer type. On some platforms
this was leading to bogus address computations in RuntimeDyldMachOAArch64.
This should fix http://llvm.org/PR20501.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215143 91177308-0d34-0410-b5e6-96231b3b80d8
it breaks the modules builds (where CallGraph.h can be quite reasonably
transitively included by an unimported portion of a module, and CallGraph.cpp
not linked in), and appears to have been entirely redundant since PR780 was
fixed back in 2008.
If this breaks anything, please revert; I have only tested this with a single
configuration, and it's possible that this is still somehow fixing something
(though I doubt it, since no other similar file uses this mechanism any more).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215142 91177308-0d34-0410-b5e6-96231b3b80d8
BranchFolderPass was not correctly setting the basic block branch weights when
tail-merging created or merged blocks. This patch recomutes the weights of
tail-merged blocks using the following formula:
branch_weight(merged block to successor j) =
sum(block_frequency(bb) * branch_probability(bb -> j))
bb is a block that is in the set of merged blocks.
<rdar://problem/16256423>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215135 91177308-0d34-0410-b5e6-96231b3b80d8
Currently FileCheck errors out on empty input. This is usually the
right thing to do, but makes testing things like "this command does
not emit some error message" hard to test. This usually leads to
people using "command 2>&1 | count 0" instead, and then the bots that
use guard malloc fail a few hours later.
By adding a flag to FileCheck that allows empty inputs, we can make
tests that consist entirely of "CHECK-NOT" lines feasible.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215127 91177308-0d34-0410-b5e6-96231b3b80d8
After adding the masking variants to several instructions, I have decided to
experiment with generating these from the non-masking/unconditional
variant. This will hopefully reduce the amount repetition that we currently
have in order to define an instruction with all its variants (for a reg/mem
instruction this would be 6 instruction defs and 2 Pat<> for the intrinsic).
The patch is the first cut that is currently only applied to valignd/q to make
the patch small.
A few notes on the approach:
* In order to stitch together the dag for both the conditional and the
unconditional patterns I pass the RHS of the set rather than the full
pattern (set dest, RHS).
* Rather than subclassing each instruction base class (e.g. AVX512AIi8),
with a masking variant which wouldn't scale, I derived the masking
instructions from a new base class AVX512 (this is just I<> with
Requires<HasAVX512>). The instructions derive from this now, plus a new set
of classes that add the format bits and everything else that instruction
base class provided (i.e. AVX512AIi8 vs. AVX512AIi8Base).
I hope we can go incrementally from here. I expect that:
* We will need different variants of the masking class. One example is
instructions requiring three vector sources. In this case we tie one of the
source operands to dest rather than a new implicit source operand ($src0)
* Add the zero-masking variant
* Add more AVX512*Base classes as new uses are added
I've looked at X86.td.expanded before and after to make sure that nothing got
lost for valignd/q.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215125 91177308-0d34-0410-b5e6-96231b3b80d8