This was previously invoking UB by passing a user-defined type to
format. Thanks to Jordan Rose for pointing this out.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191060 91177308-0d34-0410-b5e6-96231b3b80d8
Ensures that the pubnames entries actually refer to the intended
entities. This test could be more flexible if there was a way to do
multiline FileCheck matches with captures (in that way the test wouldn't
need to have hardcoded offset values and would thus be resilient to
changes in the layout of the DIEs in this CU).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191055 91177308-0d34-0410-b5e6-96231b3b80d8
This was an experimental scheduler a year ago. It's now used by
several subtargets, both in-order and out-of-order, and it
is about to be enabled by default for x86 and armv7. It will be the
new GenericScheduler for subtargets that don't provide their own
SchedulingStrategy.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191051 91177308-0d34-0410-b5e6-96231b3b80d8
C-like languages promote types like unsigned short to unsigned int before
performing an arithmetic operation. Currently the rotate matcher in the
DAGCombiner does not consider this situation.
This commit extends the DAGCombiner in the way that the pattern
(or (shl ([az]ext x), (*ext y)), (srl ([az]ext x), (*ext (sub 32, y))))
is folded into
([az]ext (rotl x, y))
The matching is restricted to aext and zext because in this cases the upper
bits are either undefined or known. Test case is included.
This fixes PR16726.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191049 91177308-0d34-0410-b5e6-96231b3b80d8
C-like languages promote types like unsigned short to unsigned int before
performing an arithmetic operation. Currently the rotate matcher in the
DAGCombiner does not consider this situation.
This commit extends the DAGCombiner in the way that the pattern
(or (shl ([az]ext x), (*ext y)), (srl ([az]ext x), (*ext (sub 32, y))))
is folded into
([az]ext (rotl x, y))
The matching is restricted to aext and zext because in this cases the upper
bits are either undefined or known. Test case is included.
This fixes PR16726.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191045 91177308-0d34-0410-b5e6-96231b3b80d8
If "C1/X" were having multiple uses, the only benefit of this
transformation is to potentially shorten critical path. But it is at the
cost of instroducing additional div.
The additional div may or may not incur cost depending on how div is
implemented. If it is implemented using Newton–Raphson iteration, it dosen't
seem to incur any cost (FIXME). However, if the div blocks the entire
pipeline, that sounds to be pretty expensive. Let CodeGen to take care
this transformation.
This patch sees 6% on a benchmark.
rdar://15032743
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191037 91177308-0d34-0410-b5e6-96231b3b80d8
Based on code review feedback from Eric Christopher, unshifting these
constants as they can appear in the gdb_index itself, shifted a further
24 bits. This means that keeping them preshifted is a bit inflexible, so
let's not do that.
Given the motivation, wrap up some nicer enums, more type safety, and
some utility functions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191035 91177308-0d34-0410-b5e6-96231b3b80d8
Names open to bikeshedding. Could switch back to the constants being
unshifted, but this way seems a bit easier to work with.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191025 91177308-0d34-0410-b5e6-96231b3b80d8
This is how it ignores the dead code:
1) When a dead branch target, say block B, is identified, all the
blocks dominated by B is dead as well.
2) The PHIs of those blocks in dominance-frontier(B) is updated such
that the operands corresponding to dead predecessors are replaced
by "UndefVal".
Using lattice's jargon, the "UndefVal" is the "Top" in essence.
Phi node like this "phi(v1 bb1, undef xx)" will be optimized into
"v1" if v1 is constant, or v1 is an instruction which dominate this
PHI node.
3) When analyzing the availability of a load L, all dead mem-ops which
L depends on disguise as a load which evaluate exactly same value as L.
4) The dead mem-ops will be materialized as "UndefVal" during code motion.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191017 91177308-0d34-0410-b5e6-96231b3b80d8
Various Windows SDK headers use _MSC_VER values to figure out what
version of the VC++ headers they're using, in particular for SAL macros.
Patch by Paul Hampson!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191015 91177308-0d34-0410-b5e6-96231b3b80d8
Adds a flag to the MemorySanitizer pass that enables runtime rewriting of
indirect calls. This is part of MSanDR implementation and is needed to return
control to the DynamiRio-based helper tool on transition between instrumented
and non-instrumented modules. Disabled by default.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191006 91177308-0d34-0410-b5e6-96231b3b80d8
When selecting the DAG (add (WrapperRIP ...), (FrameIndex ...)), X86 code had
spotted the FrameIndex possibility and was working out whether it could fold
the WrapperRIP into this.
The test for forming a %rip version is notionally whether we already have a
base or index register (%rip precludes both), but we were forgetting to account
for the register that would be inserted later to access the frame.
rdar://problem/15024520
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190995 91177308-0d34-0410-b5e6-96231b3b80d8
This puts all the global PassManager debugging flags, like
-print-after-all and -time-passes, behind a managed static. This
eliminates their static initializers and, more importantly, exit-time
destructors.
The only behavioral change I anticipate is that tools need to
initialize the PassManager before parsing the command line in order to
export these options, which makes sense. Tools that already initialize
the standard passes (opt/llc) don't need to do anything new.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190974 91177308-0d34-0410-b5e6-96231b3b80d8
1) make sure that the first two instructions of the sequence cannot
separate from each other. The linker requires that they be sequential.
If they get separated, it can still work but it will not work in all
cases because the first of the instructions mostly involves the hi part
of the pc relative offset and that part changes slowly. You would have
to be at the right boundary for this to matter.
2) make sure that this sequence begins on a longword boundary.
There appears to be a bug in binutils which makes some of these calculations
get messed up if the instruction sequence does not begin on a longword
boundary. This is being investigated with the appropriate binutils folks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190966 91177308-0d34-0410-b5e6-96231b3b80d8
Use the DIVariable::isIndirect() flag set by the frontend instead of
guessing whether to set the machine location's indirection bit.
Paired commit with CFE.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190961 91177308-0d34-0410-b5e6-96231b3b80d8
advertised - but it does have the caveat that calls to DynamicLibrary::AddSymbol will
"reset" if you shutdown llvm and try to come back for seconds. This is a subtle
behavior change, but I'm assuming that nobody is affected by it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190946 91177308-0d34-0410-b5e6-96231b3b80d8