clients to decide whether to look inside bundled instructions and whether
the query should return true if any / all bundled instructions have the
queried property.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146168 91177308-0d34-0410-b5e6-96231b3b80d8
We must not issue a bitcast operation for integer-promotion of vector types, because the
location of the values in the vector may be different.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146150 91177308-0d34-0410-b5e6-96231b3b80d8
generator to it. For non-bundle instructions, these behave exactly the same
as the MC layer API.
For properties like mayLoad / mayStore, look into the bundle and if any of the
bundled instructions has the property it would return true.
For properties like isPredicable, only return true if *all* of the bundled
instructions have the property.
For properties like canFoldAsLoad, isCompare, conservatively return false for
bundles.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146026 91177308-0d34-0410-b5e6-96231b3b80d8
This flag is used when bundling machine instructions. It indicates
whether the operand reads a value defined inside or outside its bundle.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145997 91177308-0d34-0410-b5e6-96231b3b80d8
1. Added opcode BUNDLE
2. Taught MachineInstr class to deal with bundled MIs
3. Changed MachineBasicBlock iterator to skip over bundled MIs; added an iterator to walk all the MIs
4. Taught MachineBasicBlock methods about bundled MIs
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145975 91177308-0d34-0410-b5e6-96231b3b80d8
The new register allocator is much more able to split back up ranges too constrained by register classes.
Fixes <rdar://problem/10466609>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145899 91177308-0d34-0410-b5e6-96231b3b80d8
This was actually a bit of a mess. TLI.setPrefLoopAlignment was clearly
documented as taking log2(bytes) units, but the x86 target would still
set a preferred loop alignment of '16'.
CodePlacementOpt passed this number on to the basic block, and
AsmPrinter interpreted it as bytes.
Now both MachineFunction and MachineBasicBlock use logarithmic
alignments.
Obviously, MachineConstantPool still measures alignments in bytes, so we
can emulate the thrill of using as.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145889 91177308-0d34-0410-b5e6-96231b3b80d8
change, now you need a TargetOptions object to create a TargetMachine. Clang
patch to follow.
One small functionality change in PTX. PTX had commented out the machine
verifier parts in their copy of printAndVerify. That now calls the version in
LLVMTargetMachine. Users of PTX who need verification disabled should rely on
not passing the command-line flag to enable it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145714 91177308-0d34-0410-b5e6-96231b3b80d8
non_lazy_symbol_pointers section (__IMPORT,__pointers). Ignore the 'hidden' part
since that will place it in the wrong section.
<rdar://problem/10443720>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145356 91177308-0d34-0410-b5e6-96231b3b80d8
Conservatively returns zero when the GV does not specify an alignment nor is it
initialized. Previously it returns ABI alignment for type of the GV. However, if
the type is a "packed" type, then the under-specified alignments is attached to
the load / store instructions. In that case, the alignment of the type cannot be
trusted.
rdar://10464621
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145300 91177308-0d34-0410-b5e6-96231b3b80d8