trivial difference in function attributes, allow calls to it to
be converted to direct calls. Based on a patch by Török Edwin.
While there, move the various lists of mutually incompatible
parameters etc out of the verifier and into ParameterAttributes.h.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@44315 91177308-0d34-0410-b5e6-96231b3b80d8
from the old ADCE implementation (there it was
correct because the transform was being done
for read-only functions).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@44287 91177308-0d34-0410-b5e6-96231b3b80d8
type of SV has changed from what it originally was.
However we need the store width of the original.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@43775 91177308-0d34-0410-b5e6-96231b3b80d8
or getTypeSizeInBits as appropriate in ScalarReplAggregates.
The right change to make was not always obvious, so it would
be good to have an sroa guru review this. While there I noticed
some bugs, and fixed them: (1) arrays of x86 long double have
holes due to alignment padding, but this wasn't being spotted
by HasStructPadding (renamed to HasPadding). The same goes
for arrays of oddly sized ints. Vectors also suffer from this,
in fact the problem for vectors is much worse because basic
vector assumptions seem to be broken by vectors of type with
alignment padding. I didn't try to fix any of these vector
problems. (2) The code for extracting smaller integers from
larger ones (in the "int union" case) was wrong on big-endian
machines for integers with size not a multiple of 8, like i1.
Probably this is impossible to hit via llvm-gcc, but I fixed
it anyway while there and added a testcase. I also got rid of
some trailing whitespace and changed a function name which
had an obvious typo in it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@43672 91177308-0d34-0410-b5e6-96231b3b80d8
metric is way off for these in general, and this works around
buggy code like that in PR1764. we'll see if there is a big
performance impact of this. If so, I'll revert it tomorrow.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@43668 91177308-0d34-0410-b5e6-96231b3b80d8
The meaning of getTypeSize was not clear - clarifying it is important
now that we have x86 long double and arbitrary precision integers.
The issue with long double is that it requires 80 bits, and this is
not a multiple of its alignment. This gives a primitive type for
which getTypeSize differed from getABITypeSize. For arbitrary precision
integers it is even worse: there is the minimum number of bits needed to
hold the type (eg: 36 for an i36), the maximum number of bits that will
be overwriten when storing the type (40 bits for i36) and the ABI size
(i.e. the storage size rounded up to a multiple of the alignment; 64 bits
for i36).
This patch removes getTypeSize (not really - it is still there but
deprecated to allow for a gradual transition). Instead there is:
(1) getTypeSizeInBits - a number of bits that suffices to hold all
values of the type. For a primitive type, this is the minimum number
of bits. For an i36 this is 36 bits. For x86 long double it is 80.
This corresponds to gcc's TYPE_PRECISION.
(2) getTypeStoreSizeInBits - the maximum number of bits that is
written when storing the type (or read when reading it). For an
i36 this is 40 bits, for an x86 long double it is 80 bits. This
is the size alias analysis is interested in (getTypeStoreSize
returns the number of bytes). There doesn't seem to be anything
corresponding to this in gcc.
(3) getABITypeSizeInBits - this is getTypeStoreSizeInBits rounded
up to a multiple of the alignment. For an i36 this is 64, for an
x86 long double this is 96 or 128 depending on the OS. This is the
spacing between consecutive elements when you form an array out of
this type (getABITypeSize returns the number of bytes). This is
TYPE_SIZE in gcc.
Since successive elements in a SequentialType (arrays, pointers
and vectors) need to be aligned, the spacing between them will be
given by getABITypeSize. This means that the size of an array
is the length times the getABITypeSize. It also means that GEP
computations need to use getABITypeSize when computing offsets.
Furthermore, if an alloca allocates several elements at once then
these too need to be aligned, so the size of the alloca has to be
the number of elements multiplied by getABITypeSize. Logically
speaking this doesn't have to be the case when allocating just
one element, but it is simpler to also use getABITypeSize in this
case. So alloca's and mallocs should use getABITypeSize. Finally,
since gcc's only notion of size is that given by getABITypeSize, if
you want to output assembler etc the same as gcc then getABITypeSize
is the size you want.
Since a store will overwrite no more than getTypeStoreSize bytes,
and a read will read no more than that many bytes, this is the
notion of size appropriate for alias analysis calculations.
In this patch I have corrected all type size uses except some of
those in ScalarReplAggregates, lib/Codegen, lib/Target (the hard
cases). I will get around to auditing these too at some point,
but I could do with some help.
Finally, I made one change which I think wise but others might
consider pointless and suboptimal: in an unpacked struct the
amount of space allocated for a field is now given by the ABI
size rather than getTypeStoreSize. I did this because every
other place that reserves memory for a type (eg: alloca) now
uses getABITypeSize, and I didn't want to make an exception
for unpacked structs, i.e. I did it to make things more uniform.
This only effects structs containing long doubles and arbitrary
precision integers. If someone wants to pack these types more
tightly they can always use a packed struct.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@43620 91177308-0d34-0410-b5e6-96231b3b80d8
- ChangeCompareStride only reuse stride that is larger than current stride. It
will let the general reuse mechanism to try to reuse a smaller stride.
- Watch out for multiplication overflow in ChangeCompareStride.
- Replace std::set with SmallPtrSet.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@43408 91177308-0d34-0410-b5e6-96231b3b80d8
and the compaison is against a constant value, try eliminate the stride
by moving the compare instruction to another stride and change its
constant operand accordingly. e.g.
loop:
...
v1 = v1 + 3
v2 = v2 + 1
if (v2 < 10) goto loop
=>
loop:
...
v1 = v1 + 3
if (v1 < 30) goto loop
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@43336 91177308-0d34-0410-b5e6-96231b3b80d8
- Avoid attempting stride-reuse in the case that there are users that
aren't addresses. In that case, there will be places where the
multiplications won't be folded away, so it's better to try to
strength-reduce them.
- Several SSE intrinsics have operands that strength-reduction can
treat as addresses. The previous item makes this more visible, as
any non-address use of an IV can inhibit stride-reuse.
- Make ValidStride aware of whether there's likely to be a base
register in the address computation. This prevents it from thinking
that things like stride 9 are valid on x86 when the base register is
already occupied.
Also, XFAIL the 2007-08-10-LEA16Use32.ll test; the new logic to avoid
stride-reuse elimintes the LEA in the loop, so the test is no longer
testing what it was intended to test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@43231 91177308-0d34-0410-b5e6-96231b3b80d8