of several newly un-defaulted switches. This also helps optimizers
(including LLVM's) recognize that every case is covered, and we should
assume as much.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147861 91177308-0d34-0410-b5e6-96231b3b80d8
was returning incorrect values in rare cases, and incorrectly marking
exact conversions as inexact in some more common cases. Fixes PR11406, and a
missed optimization in test/CodeGen/X86/fp-stack-O0.ll.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145141 91177308-0d34-0410-b5e6-96231b3b80d8
errors like the one corrected by r135261. Migrate all LLVM callers of the old
constructor to the new one.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@135431 91177308-0d34-0410-b5e6-96231b3b80d8
desired overload.
This is a bit of a hackish workaround to fix the compile after r135259.
Let me know if there is a better approach.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@135261 91177308-0d34-0410-b5e6-96231b3b80d8
Some platforms may treat denormals as zero, on other platforms multiplication
with a subnormal is slower than dividing by a normal.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128555 91177308-0d34-0410-b5e6-96231b3b80d8
The idea is, that if an ieee 754 float is divided by a power of two, we can
turn the division into a cheaper multiplication. This function sees if we can
get an exact multiplicative inverse for a divisor and returns it if possible.
This is the hard part of PR9587.
I tested many inputs against llvm-gcc's frotend implementation of this
optimization and didn't find any difference. However, floating point is the
land of weird edge cases, so any review would be appreciated.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128545 91177308-0d34-0410-b5e6-96231b3b80d8
makes valgrind stop complaining about uninitialized variables being read when it
accesses a bitfield (category) that shares its bits with these variables.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127871 91177308-0d34-0410-b5e6-96231b3b80d8
clang's -Wuninitialized-experimental warning.
While these don't look like real bugs, clang's
-Wuninitialized-experimental analysis is stricter
than GCC's, and these fixes have the benefit
of being general nice cleanups.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@124073 91177308-0d34-0410-b5e6-96231b3b80d8
zextOrTrunc(), and APSInt methods extend(), extOrTrunc() and new method
trunc(), to be const and to return a new value instead of modifying the
object in place.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@121120 91177308-0d34-0410-b5e6-96231b3b80d8
APInt. Be certain to set the integer bit in an x87 extended-precision
significand so that we don't accidentally make a pseudo-NaN.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97382 91177308-0d34-0410-b5e6-96231b3b80d8
payloads. APFloat's internal folding routines always make QNaNs now,
instead of sometimes making QNaNs and sometimes SNaNs depending on the
type.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97364 91177308-0d34-0410-b5e6-96231b3b80d8
cut the significand down to the desired precision *before* entering the
core divmod loop. Makes the overall algorithm logarithmic in the exponent.
There's still a lot of room for improvement here, but this gets the
performance back down to acceptable-for-diagnostics levels, even for
long doubles.
negligible, even on long doubles.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@92130 91177308-0d34-0410-b5e6-96231b3b80d8
smallest-normalized-magnitude values in a given FP semantics.
Provide an APFloat-to-string conversion which I am quite ready to admit could
be much more efficient.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@92126 91177308-0d34-0410-b5e6-96231b3b80d8
This also adds unit tests to APFloat that mainly tests the
string handling of APFloat, but not much else of it's api.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@79210 91177308-0d34-0410-b5e6-96231b3b80d8
This adds location info for all llvm_unreachable calls (which is a macro now) in
!NDEBUG builds.
In NDEBUG builds location info and the message is off (it only prints
"UREACHABLE executed").
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@75640 91177308-0d34-0410-b5e6-96231b3b80d8
Make llvm_unreachable take an optional string, thus moving the cerr<< out of
line.
LLVM_UNREACHABLE is now a simple wrapper that makes the message go away for
NDEBUG builds.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@75379 91177308-0d34-0410-b5e6-96231b3b80d8
same as a normal i80 {low64, high16} rather
than its own {high64, low16}. A depressing number
of places know about this; I think I got them all.
Bitcode readers and writers convert back to the old
form to avoid breaking compatibility.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@67562 91177308-0d34-0410-b5e6-96231b3b80d8