This just adds the basics necessary for allocating the upper words to
virtual registers (move, load and store). The move support is parameterised
in a way that makes it easy to handle zero extensions, but the associated
zero-extend patterns are added by a later patch.
The easiest way of testing this seemed to be add a new "h" register
constraint for high words. I don't expect the constraint to be useful
in real inline asms, but it should work, so I didn't try to hide it
behind an option.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191739 91177308-0d34-0410-b5e6-96231b3b80d8
Originally committed as r191661, but reverted because it changed the matching
order of comparisons on some hosts. That should have been fixed by r191735.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191738 91177308-0d34-0410-b5e6-96231b3b80d8
SEC_OFFSET from the beginning of the section so go ahead and emit
a label at the beginning of each one.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191710 91177308-0d34-0410-b5e6-96231b3b80d8
The test's output doesn't change, but this ensures
this is actually hit with a different address space.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191701 91177308-0d34-0410-b5e6-96231b3b80d8
Changing the diagnostic message for out of range branch targets in 191686 broke the tests.
The diagnostic message for out of range branch targets was changed to be more consistent with the other diagnostics.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191691 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds Direct Object Emission support for I8 instructions: andi.b, bmnzi.b, bmzi.b, bseli.b, nori.b, ori.b, shf.{b,h,w} and xori.b.
Patch by Matheus Almeida
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191688 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds Direct Object Emission support for 2R instructions: nloc.{b,h,w}, nlzc.{b,h,w}, pcnt.{b,w,d}.
Patch by Matheus Almeida
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191685 91177308-0d34-0410-b5e6-96231b3b80d8
Inspired by the object from the SLPVectorizer. This found a minor bug in the
debug loc restoration in the vectorizer where the location of a following
instruction was attached instead of the location from the original instruction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191673 91177308-0d34-0410-b5e6-96231b3b80d8
Enable building the LTO library (.lib and.dll) and llvm-lto.exe on Windows with
MSVC and Mingw as well as re-enabling the associated test.
Patch by Greg Bedwell!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191670 91177308-0d34-0410-b5e6-96231b3b80d8
when it was actually a Constant*.
There are quite a few other casts to Instruction that might have the same problem,
but this is the only one I have a test case for.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191668 91177308-0d34-0410-b5e6-96231b3b80d8
For some reason, adding definitions for these load and store
instructions changed whether some of the build bots matched
comparisons as signed or unsigned.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191663 91177308-0d34-0410-b5e6-96231b3b80d8
Add VEX_LIG to scalar FMA4 instructions.
Use VEX_LIG in some of the inheriting checks in disassembler table generator.
Make use of VEX_L_W, VEX_L_W_XS, VEX_L_W_XD contexts.
Don't let VEX_L_W, VEX_L_W_XS, VEX_L_W_XD, VEX_L_W_OPSIZE inherit from their non-L forms unless VEX_LIG is set.
Let VEX_L_W, VEX_L_W_XS, VEX_L_W_XD, VEX_L_W_OPSIZE inherit from all of their non-L or non-W cases.
Increase ranking on VEX_L_W, VEX_L_W_XS, VEX_L_W_XD, VEX_L_W_OPSIZE so they get chosen over non-L/non-W forms.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191649 91177308-0d34-0410-b5e6-96231b3b80d8
We were completely ignoring the unorder/ordered attributes of condition
codes and also incorrectly lowering seto and setuo.
Reviewed-by: Vincent Lejeune<vljn at ovi.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191603 91177308-0d34-0410-b5e6-96231b3b80d8
We treat TBAA tags as struct-path aware TBAA format when the first operand
is a MDNode and the tag has 3 or more operands.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191593 91177308-0d34-0410-b5e6-96231b3b80d8
of loops.
Previously, two consecutive calls to function "func" would result in the
following sequence of instructions:
1. load $16, %got(func)($gp) // load address of lazy-binding stub.
2. move $25, $16
3. jalr $25 // jump to lazy-binding stub.
4. nop
5. move $25, $16
6. jalr $25 // jump to lazy-binding stub again.
With this patch, the second call directly jumps to func's address, bypassing
the lazy-binding resolution routine:
1. load $25, %got(func)($gp) // load address of lazy-binding stub.
2. jalr $25 // jump to lazy-binding stub.
3. nop
4. load $25, %got(func)($gp) // load resolved address of func.
5. jalr $25 // directly jump to func.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191591 91177308-0d34-0410-b5e6-96231b3b80d8
Currently foldSelectICmpAndOr asserts if the "or" involves a vector
containing several of the same power of two. We can easily avoid this by
only performing the fold on integer types, like foldSelectICmpAnd does.
Fixes <rdar://problem/15012516>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191552 91177308-0d34-0410-b5e6-96231b3b80d8
Remove the command line argument "struct-path-tbaa" since we should not depend
on command line argument to decide which format the IR file is using. Instead,
we check the first operand of the tbaa tag node, if it is a MDNode, we treat
it as struct-path aware TBAA format, otherwise, we treat it as scalar TBAA
format.
When clang starts to use struct-path aware TBAA format no matter whether
struct-path-tbaa is no, and we can auto-upgrade existing bc files, the support
for scalar TBAA format can be dropped.
Existing testing cases are updated to use the struct-path aware TBAA format.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191538 91177308-0d34-0410-b5e6-96231b3b80d8
We were previously using getFirstInsertionPt to insert PHI
instructions when vectorizing, but getFirstInsertionPt also skips past
landingpads, causing this to generate invalid IR.
We can avoid this issue by using getFirstNonPHI instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191526 91177308-0d34-0410-b5e6-96231b3b80d8