Header/cpp file rename to follow immediately - just splitting out the
commits for ease of review/reading to demonstrate that the renaming
changes are entirely mechanical.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196139 91177308-0d34-0410-b5e6-96231b3b80d8
MO_JumpTableIndex and MO_ExternalSymbol don't show up on inline asm.
Keeping parts of the old asm printer just to print inline asm to a string that
we then parse back looks like a hack.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196111 91177308-0d34-0410-b5e6-96231b3b80d8
The profile file parser needed some tests for its parsing actions.
This adds tests for each of the error messages emitted by the parser.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196106 91177308-0d34-0410-b5e6-96231b3b80d8
This file hasn't been updated in years. Remove old information and point to
the current documentation at GoldPlugin.rst.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196100 91177308-0d34-0410-b5e6-96231b3b80d8
When a block is unreachable, asking its dom tree descendants should
return the empty set. However, the computation of the descendants
was causing a segmentation fault because the dom tree node we get
from the basic block is initially NULL.
Fixed by adding a test for a valid dom tree node before we iterate.
The patch also adds some unit tests to the existing dom tree tests.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196099 91177308-0d34-0410-b5e6-96231b3b80d8
to be a bit more sensible. The public interface now is first followed by
the implementation details.
This also resolves a FIXME to make something private -- it was already
possible as the one special caller was already a friend.
No functionality changed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196095 91177308-0d34-0410-b5e6-96231b3b80d8
eliminateFrameIndex() has been reworked to handle both small & large frames
with either a FP or SP.
An additional Slot is required for Scavenging spills when not using FP for large frames.
Reworked the handling of Register Scavenging.
Whether we are using an FP or not, whether it is a large frame or not,
and whether we are using a large code model or not are now independent.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196091 91177308-0d34-0410-b5e6-96231b3b80d8
These are used by MachO only at the moment, and (much like the existing
MOVW/MOVT set) work around the fact that the labels used in the actual
instructions often contain PC-dependent components, which means that repeatedly
materialising the same global can't be CSEed.
With small modifications, it could be adapted to how ELF finds the address of
_GLOBAL_OFFSET_TABLE_, which would give similar benefits in PIC mode there.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196090 91177308-0d34-0410-b5e6-96231b3b80d8
When using large code model:
Global objects larger than 'CodeModelLargeSize' bytes are placed in sections named with a trailing ".large"
The folded global address of such objects are lowered into the const pool.
During inspection it was noted that LowerConstantPool() was using a default offset of zero.
A fix was made, but due to only offsets of zero being generated, testing only verifies the change is not detrimental.
Correct the flags emitted for explicitly specified sections.
We assume the size of the object queried by getSectionForConstant() is never greater than CodeModelLargeSize.
To handle greater than CodeModelLargeSize, changes to AsmPrinter would be required.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196087 91177308-0d34-0410-b5e6-96231b3b80d8
Large frame offsets are loaded from the ConstantPool.
Where possible, offsets are encoded using the smaller MKMSK instruction.
Large frame offsets can only be used when there is a frame-pointer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196085 91177308-0d34-0410-b5e6-96231b3b80d8
* Update build instructions to reflect the current source tree layout.
* Don't inflict CVS on readers; there's a perfectly good git mirror.
* configure with --disable-werror making it possible to build using clang.
* ar and nm-new now support the -plugin option.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196069 91177308-0d34-0410-b5e6-96231b3b80d8
Previously, we clobbered callee-saved registers when folding an "add
sp, #N" into a "pop {rD, ...}" instruction. This change checks whether
a register we're going to add to the "pop" could actually be live
outside the function before doing so and should fix the issue.
This should fix PR18081.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196046 91177308-0d34-0410-b5e6-96231b3b80d8
- Actually abort when an error occurred.
- Check that the frontend lookup worked when parsing length/size/type operators.
Tested by a clang test. PR18096.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196044 91177308-0d34-0410-b5e6-96231b3b80d8
This adds a scheduling model for the POWER7 (P7) core, and enables the
machine-instruction scheduler when targeting the P7. Scheduling for the P7,
like earlier ooo PPC cores, requires considering both dispatch group hazards,
and functional unit resources and latencies. These are both modeled in a
combined itinerary. Dispatch group formation is still handled by the post-RA
scheduler (which still needs to be updated for the P7, but nevertheless does a
pretty good job).
One interesting aspect of this change is that I've also enabled to use of AA
duing CodeGen for the P7 (just as it is for the embedded cores). The benchmark
results seem to support this decision (see below), and while this is normally
useful for in-order cores, and not for ooo cores like the P7, I think that the
dispatch slot hazards are enough like in-order resources to make the AA useful.
Test suite significant performance differences (where negative is a speedup,
and positive is a regression) vs. the current situation:
MultiSource/Benchmarks/BitBench/drop3/drop3
with AA: N/A
without AA: -28.7614% +/- 19.8356%
(significantly against AA)
MultiSource/Benchmarks/FreeBench/neural/neural
with AA: -17.7406% +/- 11.2712%
without AA: N/A
(significantly in favor of AA)
MultiSource/Benchmarks/SciMark2-C/scimark2
with AA: -11.2079% +/- 1.80543%
without AA: -11.3263% +/- 2.79651%
MultiSource/Benchmarks/TSVC/Symbolics-flt/Symbolics-flt
with AA: -41.8649% +/- 17.0053%
without AA: -34.5256% +/- 23.7072%
MultiSource/Benchmarks/mafft/pairlocalalign
with AA: 25.3016% +/- 17.8614%
without AA: 38.6629% +/- 14.9391%
(significantly in favor of AA)
MultiSource/Benchmarks/sim/sim
with AA: N/A
without AA: 13.4844% +/- 7.18195%
(significantly in favor of AA)
SingleSource/Benchmarks/BenchmarkGame/Large/fasta
with AA: 15.0664% +/- 6.70216%
without AA: 12.7747% +/- 8.43043%
SingleSource/Benchmarks/BenchmarkGame/puzzle
with AA: 82.2713% +/- 26.3567%
without AA: 75.7525% +/- 41.1842%
SingleSource/Benchmarks/Misc/flops-2
with AA: -37.1621% +/- 20.7964%
without AA: -35.2342% +/- 20.2999%
(significantly in favor of AA)
These are 99.5% confidence intervals from 5 runs per configuration. Regarding
the choice to turn on AA during CodeGen, of these results, four seem
significantly in favor of using AA, and one seems significantly against. I'm
not making this decision based on these numbers alone, but these results
seem consistent with results I have from other tests, and so I think that, on
balance, using AA is a win.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195981 91177308-0d34-0410-b5e6-96231b3b80d8
In preparation for adding scheduling definitions for the POWER7, split some PPC
itinerary classes so that the P7's latencies and hazards can be better
described. For the most part, this means differentiating indexed from non-index
pre-increment loads and stores. Also, differentiate single from
double-precision sqrt.
No functionality change intended (except for a more-specific latency for
single-precision sqrt on the A2).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195980 91177308-0d34-0410-b5e6-96231b3b80d8
Convert this test to FileCheck, and improve it to check for the instructions it
is trying to exclude instead of checking for register use (especially because
grepping for r1 can be thrown off, for example, by a use of r12).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195979 91177308-0d34-0410-b5e6-96231b3b80d8
Some of these tests did not specify a cpu but were also sensitive to
instruction scheduling and/or register assignment choices. A few others
similarly-sensitive tests specified a cpu (often the POWER7), and while the P7
currently uses the default model for PPC64, this will soon change. For those
tests which should not really be cpu-dependent anyway, the cpu is set to the
generic 'ppc64'.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195977 91177308-0d34-0410-b5e6-96231b3b80d8