Should make the tests run when using CMake on systems where 'uname -p'
reports "amd64", such as FreeBSD.
Should fix PR21559.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226937 91177308-0d34-0410-b5e6-96231b3b80d8
SimplifyCFG currently does this transformation, but I'm planning to remove that
to allow other passes, such as this one, to exploit the unreachable default.
This patch takes care to keep track of what case values are unreachable even
after the transformation, allowing for more efficient lowering.
Differential Revision: http://reviews.llvm.org/D6697
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226934 91177308-0d34-0410-b5e6-96231b3b80d8
This mostly reverts commit r222062 and replaces it with a new enum. At
some point this enum will grow at least for other MSVC EH personalities.
Also beefs up the way we were sniffing the personality function.
Previously we would emit the Itanium LSDA despite using
__C_specific_handler.
Reviewers: majnemer
Differential Revision: http://reviews.llvm.org/D6987
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226920 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
We used to silently ignore any empty .module's and we used to give an error saying that we found
an "unexpected token at start of statement" when the value of the option wasn't an identifier (e.g. if it was a number).
We now give an error saying that we "expected .module option identifier" in both of those cases.
I also fixed the other tests in mips-abi-bad.s, which all seemed to be broken.
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D7095
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226905 91177308-0d34-0410-b5e6-96231b3b80d8
v2: add and enable tests for SI
Signed-off-by: Jan Vesely <jan.vesely@rutgers.edu>
Reviewed-by: Matt Arsenault <Matthew.Arsenault@amd.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226881 91177308-0d34-0410-b5e6-96231b3b80d8
Minor tweak now that D7042 is complete, we can enable stack folding for (V)MOVDDUP and do proper testing.
Added missing AVX ymm folding patterns and fixed alignment for AVX VMOVSLDUP / VMOVSHDUP.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226873 91177308-0d34-0410-b5e6-96231b3b80d8
I had already factored this analysis specifically to enable doing this,
but hadn't actually committed the necessary wiring to get at this from
the new pass manager. This also nicely shows how the separate cache
object can be directly managed by the new pass manager.
This analysis didn't have any direct tests and so I've added a printer
pass and a boring test case. I chose to print the i1 value which is
being assumed rather than the call to llvm.assume as that seems much
more useful for testing... but suggestions on an even better printing
strategy welcome. My main goal was to make sure things actually work. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226868 91177308-0d34-0410-b5e6-96231b3b80d8
During `MDNode::deleteTemporary()`, call `replaceAllUsesWith(nullptr)`
to update all tracking references to `nullptr`.
This fixes PR22280, where inverted destruction order between tracking
references and the temporaries themselves caused a use-after-free in
`LLParser`.
An alternative fix would be to add an assertion that there are no users,
and continue to fix inverted destruction order in clients (like
`LLParser`), but instead I decided to make getting-teardown-right easy.
(If someone disagrees let me know.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226866 91177308-0d34-0410-b5e6-96231b3b80d8
Specifically, gc.result benefits from this greatly. Instead of:
gc.result.int.*
gc.result.float.*
gc.result.ptr.*
...
We now have a gc.result.* that can specialize to literally any type.
Differential Revision: http://reviews.llvm.org/D7020
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226857 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r176827.
Björn Steinbrink pointed out that this didn't actually fix the bug
(PR15555) it was attempting to fix.
With this reverted, we can now remove landingpad cleanups that
immediately resume unwinding, converting the invoke to a call.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226850 91177308-0d34-0410-b5e6-96231b3b80d8
This is a 2nd try at the same optimization as http://reviews.llvm.org/D6698.
That patch was checked in at r224611, but reverted at r225031 because it
caused a failure outside of the regression tests.
The cause of the crash was not recognizing consecutive stores that have mixed
source values (loads and vector element extracts), so this patch adds a check
to bail out if any store value is not coming from a vector element extract.
This patch also refactors the shared logic of the constant source and vector
extracted elements source cases into a helper function.
Differential Revision: http://reviews.llvm.org/D6850
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226845 91177308-0d34-0410-b5e6-96231b3b80d8
The underlying bug has been fixed in r226736 so there's no need to
workaround this anymore.
This reverts commit r220923.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226842 91177308-0d34-0410-b5e6-96231b3b80d8
The ELF format is used on Windows by the MCJIT engine. Thus, on Windows, the
ELFObjectWriter can encounter symbols mangled using the MS Visual Studio C++
name mangling. Symbols mangled using the MSVC C++ name mangling can legally
have "@@@" as a substring. The EFLObjectWriter should not interpret the "@@@"
substring as specifying GNU-style symbol versioning. The ELFObjectWriter
therefore check for the MSVC C++ name mangling prefix which is either "?", "@?",
"imp_?" or "imp_?@".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226830 91177308-0d34-0410-b5e6-96231b3b80d8
This solves PR22276.
Splats of constants would sometimes produce redundant shuffles, sometimes ridiculously so (see the PR for details). Fold these shuffles into BUILD_VECTORs early on instead.
Differential Revision: http://reviews.llvm.org/D7093
Fixed recommit of r226811.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226816 91177308-0d34-0410-b5e6-96231b3b80d8
This solves PR22276.
Splats of constants would sometimes produce redundant shuffles, sometimes ridiculously so (see the PR for details). Fold these shuffles into BUILD_VECTORs early on instead.
Differential Revision: http://reviews.llvm.org/D7093
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226811 91177308-0d34-0410-b5e6-96231b3b80d8
The problem occurs when after vectorization we have type
<2 x i32>. This type is promoted to <2 x i64> and then requires
additional efforts for expanding loads and truncating stores.
I added EXPAND / TRUNCATE attributes to the masked load/store
SDNodes. The code now contains additional shuffles.
I've prepared changes in the cost estimation for masked memory
operations, it will be submitted separately.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226808 91177308-0d34-0410-b5e6-96231b3b80d8
Type MVT::i1 became legal in KNL, but store operation can't be narrowed to this type,
since the size of VT (1 bit) is not equal to its actual store size(8 bits).
Added a test provided by David (dag@cray.com)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226805 91177308-0d34-0410-b5e6-96231b3b80d8
There are places where the inductive range check elimination pass
depends on two llvm::Values or llvm::SCEVs to be of the same
llvm::Type when they do not need to be. This patch relaxes those
restrictions (by bailing out of the optimization if the types
mismatch), and adds test cases to trigger those paths.
These issues were found by bootstrapping clang with IRCE running in
the -O3 pass ordering.
Differential Revision: http://reviews.llvm.org/D7082
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226793 91177308-0d34-0410-b5e6-96231b3b80d8
ever stored to always use a legal integer type if one is available.
Regardless of whether this particular type is good or bad, it ensures we
don't get weird differences in generated code (and resulting
performance) from "equivalent" patterns that happen to end up using
a slightly different type.
After some discussion on llvmdev it seems everyone generally likes this
canonicalization. However, there may be some parts of LLVM that handle
it poorly and need to be fixed. I have at least verified that this
doesn't impede GVN and instcombine's store-to-load forwarding powers in
any obvious cases. Subtle cases are exactly what we need te flush out if
they remain.
Also note that this IR pattern should already be hitting LLVM from Clang
at least because it is exactly the IR which would be produced if you
used memcpy to copy a pointer or floating point between memory instead
of a variable.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226781 91177308-0d34-0410-b5e6-96231b3b80d8
Windows supports a restricted set of relocations (compared to ARM ELF). In some
cases, we may end up generating an unsupported relocation. This can occur with
bad input to the assembler in particular (the frontend should never generate
code that cannot be compiled). Generate an error rather than just aborting.
The change in the API is driven by the desire to provide a slightly more helpful
message for debugging purposes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226779 91177308-0d34-0410-b5e6-96231b3b80d8
ScalarEvolution currently lowers a subtraction recurrence to an add
recurrence with the same no-wrap flags as the subtraction. This is
incorrect because `sub nsw X, Y` is not the same as `add nsw X, -Y`
and `sub nuw X, Y` is not the same as `add nuw X, -Y`. This patch
fixes the issue, and adds two test cases demonstrating the bug.
Differential Revision: http://reviews.llvm.org/D7081
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226755 91177308-0d34-0410-b5e6-96231b3b80d8
Added most of the missing integer vector folding patterns for SSE (to SSE42) and AVX1.
The most useful of these are probably the i32/i64 extraction, i8/i16/i32/i64 insertions, zero/sign extension, unsigned saturation subtractions, i64 subtractions and the variable mask blends (pblendvb) - others include CLMUL, SSE42 string comparisons and bit tests.
Differential Revision: http://reviews.llvm.org/D7094
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226745 91177308-0d34-0410-b5e6-96231b3b80d8
When two calls from the same MDLocation are inlined they currently get
treated as one inlined function call (creating difficulty debugging,
duplicate variables, etc).
Clang worked around this by including column information on inline calls
which doesn't address LTO inlining or calls to the same function from
the same line and column (such as through a macro). It also didn't
address ctor and member function calls.
By making the inlinedAt locations distinct, every call site has an
explicitly distinct location that cannot be coalesced with any other
call.
This can produce linearly (2x in the worst case where every call is
inlined and the call instruction has a non-call instruction at the same
location) more debug locations. Any increase beyond that are in cases
where the Clang workaround was insufficient and the new scheme is
creating necessary distinct nodes that were being erroneously coalesced
previously.
After this change to LLVM the incomplete workarounds in Clang. That
should reduce the number of debug locations (in a build without column
info, the default on Darwin, not the default on Linux) by not creating
pseudo-distinct locations for every call to an inline function.
(oh, and I made the inlined-at chain rebuilding iterative instead of
recursive because I was having trouble wrapping my head around it the
way it was - open to discussion on the right design for that function
(including going back to a recursive solution))
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226736 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds shuffle matching for the SSE3 MOVDDUP, MOVSLDUP and MOVSHDUP instructions. The big use of these being that they avoid many single source shuffles from needing to use (pre-AVX) dual source instructions such as SHUFPD/SHUFPS: causing extra moves and preventing load folds.
Adding these instructions uncovered an issue in XFormVExtractWithShuffleIntoLoad which crashed on single operand shuffle instructions (now fixed). It also involved fixing getTargetShuffleMask to correctly identify theses instructions as unary shuffles.
Also adds a missing tablegen pattern for MOVDDUP.
Differential Revision: http://reviews.llvm.org/D7042
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226716 91177308-0d34-0410-b5e6-96231b3b80d8
The return type of a thunk is meaningless, we just want the arguments
and return value to be forwarded.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226708 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes it for SI. It also removes the pattern
used previously for Evergreen for f32. I'm not sure
if the the new R600 output is better or not, but it uses
1 fewer instructions if BFI is available.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226682 91177308-0d34-0410-b5e6-96231b3b80d8
Now that we can fully specify extload legality, we can declare them
legal for the PMOVSX/PMOVZX instructions. This for instance enables
a DAGCombine to fire on code such as
(and (<zextload-equivalent> ...), <redundant mask>)
to turn it into:
(zextload ...)
as seen in the testcase changes.
There is one regression, in widen_load-2.ll: we're no longer able
to do store-to-load forwarding with illegal extload memory types.
This will be addressed separately.
Differential Revision: http://reviews.llvm.org/D6533
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226676 91177308-0d34-0410-b5e6-96231b3b80d8
AAPCS64 says that it's up to the platform to specify whether x18 is
reserved, and a first step on that way is to add a flag controlling
it.
From: Andrew Turner <andrew@fubar.geek.nz>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226664 91177308-0d34-0410-b5e6-96231b3b80d8