There are two types of files in the old (current) debug info schema.
!0 = !{!"some/filename", !"/path/to/dir"}
!1 = !{!"0x29", !0} ; [ DW_TAG_file_type ]
!1 has a wrapper class called `DIFile` which inherits from `DIScope` and
is referenced in 'scope' fields.
!0 is called a "file node", and debug info nodes with a 'file' field
point at one of these directly -- although they're built in `DIBuilder`
by sending in a `DIFile` and reaching into it.
In the new hierarchy, I unified these nodes as `MDFile` (which `DIFile`
is a lightweight wrapper for) in r230057. Moving the new hierarchy into
place (and upgrading testcases) caused CodeGen/X86/unknown-location.ll
to start failing -- apparently "0x29" was previously showing up in the
linetable as a filename, causing:
.loc 2 4 3
(where 2 points at filename "0x29") instead of:
.loc 1 4 3
(where 1 points at the actual filename).
Change the testcase to use the old schema correctly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230880 91177308-0d34-0410-b5e6-96231b3b80d8
Straightforward patch to emit an alignment directive when emitting a
TOC entry. The test case was generated from the test in PR22711 that
demonstrated a misaligned .toc section. The object code is run
through llvm-readobj to verify that the correct alignment has been
applied to the .toc section.
Thanks to Ulrich Weigand for running down where the fix was needed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230801 91177308-0d34-0410-b5e6-96231b3b80d8
Essentially the same as the GEP change in r230786.
A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)
import fileinput
import sys
import re
pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")
for line in sys.stdin:
sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7649
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230794 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Until now, we did this (among other things) based on whether or not the
target was Windows. This is clearly wrong, not just for Win64 ABI functions
on non-Windows, but for System V ABI functions on Windows, too. In this
change, we make this decision based on the ABI the calling convention
specifies instead.
Reviewers: rnk
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D7953
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230793 91177308-0d34-0410-b5e6-96231b3b80d8
When using Altivec, we can use vector loads and stores for aligned memcpy and
friends. Starting with the P7 and VXS, we have reasonable unaligned vector
stores. Starting with the P8, we have fast unaligned loads too.
For QPX, we use vector loads are stores, but only for aligned memory accesses.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230788 91177308-0d34-0410-b5e6-96231b3b80d8
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.
This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.
* This doesn't modify gep operators, only instructions (operators will be
handled separately)
* Textual IR changes only. Bitcode (including upgrade) and changing the
in-memory representation will be in separate changes.
* geps of vectors are transformed as:
getelementptr <4 x float*> %x, ...
->getelementptr float, <4 x float*> %x, ...
Then, once the opaque pointer type is introduced, this will ultimately look
like:
getelementptr float, <4 x ptr> %x
with the unambiguous interpretation that it is a vector of pointers to float.
* address spaces remain on the pointer, not the type:
getelementptr float addrspace(1)* %x
->getelementptr float, float addrspace(1)* %x
Then, eventually:
getelementptr float, ptr addrspace(1) %x
Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.
update.py:
import fileinput
import sys
import re
ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
def conv(match, line):
if not match:
return line
line = match.groups()[0]
if len(match.groups()[5]) == 0:
line += match.groups()[2]
line += match.groups()[3]
line += ", "
line += match.groups()[1]
line += "\n"
return line
for line in sys.stdin:
if line.find("getelementptr ") == line.find("getelementptr inbounds"):
if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
line = conv(re.match(ibrep, line), line)
elif line.find("getelementptr ") != line.find("getelementptr ("):
line = conv(re.match(normrep, line), line)
sys.stdout.write(line)
apply.sh:
for name in "$@"
do
python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
rm -f "$name.tmp"
done
The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh
After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).
The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7636
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230786 91177308-0d34-0410-b5e6-96231b3b80d8
This work is currently being rethought along different lines and
if this work is needed it can be resurrected out of svn. Remove it
for now as no current work in ongoing on it and it's unused. Verified
with the authors before removal.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230780 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Currently fast-isel-abort will only abort for regular instructions,
and just warn for function calls, terminators, function arguments.
There is already fast-isel-abort-args but nothing for calls and
terminators.
This change turns the fast-isel-abort options into an integer option,
so that multiple levels of strictness can be defined.
This will help no being surprised when the "abort" option indeed does
not abort, and enables the possibility to write test that verifies
that no intrinsics are forgotten by fast-isel.
Reviewers: resistor, echristo
Subscribers: jfb, llvm-commits
Differential Revision: http://reviews.llvm.org/D7941
From: Mehdi Amini <mehdi.amini@apple.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230775 91177308-0d34-0410-b5e6-96231b3b80d8
This removes a bit of duplicated code and more importantly, remembers the
labels so that they don't need to be looked up by name.
This in turn allows for any name to be used and avoids a crash if the name
we wanted was already taken.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230772 91177308-0d34-0410-b5e6-96231b3b80d8
vectors. This lets us fix the rest of the v16 lowering problems when
pshufb is clearly better.
We might still be able to improve some of the lowerings by enabling the
other combine-based rewriting to fire for non-128-bit vectors, but this
at least should remove any regressions from using the fancy v16i16
lowering strategy.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230753 91177308-0d34-0410-b5e6-96231b3b80d8
repeated 128-bit lane shuffles of wider vector types and use it to lower
256-bit v16i16 vector shuffles where applicable.
This should let us perfectly lowering the pattern of pshuflw and pshufhw
even for AVX2 256-bit patterns.
I've not added AVX-512 support, but it should be trivial for someone
working on that to wire up.
Note that currently this generates bad, long shuffle chains because we
don't combine 256-bit target shuffles. The subsequent patches will fix
that.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230751 91177308-0d34-0410-b5e6-96231b3b80d8
by mirroring v8i16 test cases across both 128-bit lanes. This should
highlight problems where we aren't correctly using 128-bit shuffles to
implement things.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230750 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
We identify the cases where the operand to an ADDE node is a constant
zero. In such cases, we can avoid generating an extra ADDu instruction
disguised as an identity move alias (ie. addu $r, $r, 0 --> move $r, $r).
Reviewers: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D7906
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230742 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This change causes us to actually save non-volatile registers in a Win64
ABI function that calls a System V ABI function, and vice-versa.
Reviewers: rnk
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D7919
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230714 91177308-0d34-0410-b5e6-96231b3b80d8
blend as legal.
We made the same mistake in two different places. Whenever we are custom
lowering a v32i8 blend we need to check whether we are custom lowering
it only for constant conditions that can be shuffled, or whether we
actually have AVX2 and full dynamic blending support on bytes. Both are
fixed, with comments added to make it clear what is going on and a new
test case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230695 91177308-0d34-0410-b5e6-96231b3b80d8
have the debugger step through each one individually. Turn off the
combine for adjacent stores at -O0 so we get this behavior.
Possibly, DAGCombine shouldn't run at all at -O0, but that's for
another day; see PR22346.
Differential Revision: http://reviews.llvm.org/D7181
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230659 91177308-0d34-0410-b5e6-96231b3b80d8
In case of "krait" CPU, asm printer doesn't emit any ".cpu" so the
features bits are not computed. This patch lets the asm printer
emit ".cpu cortex-a9" directive for krait and the hwdiv feature is
enabled through ".arch_extension". In short, krait is treated
as "cortex-a9" with hwdiv. We can not emit ".krait" as CPU since
it is not supported bu GNU GAS yet
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230651 91177308-0d34-0410-b5e6-96231b3b80d8
Turns out that after the past MMX commits, we don't need to rely on this
flag to get better codegen for MMX. Also update the tests to become
triple neutral.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230637 91177308-0d34-0410-b5e6-96231b3b80d8
LDtocL, and other loads that roughly correspond to the TOC_ENTRY SDAG node,
represent loads from the TOC, which is invariant. As a result, these loads can
be hoisted out of loops, etc. In order to do this, we need to generate
GOT-style MMOs for TOC_ENTRY, which requires treating it as a legitimate memory
intrinsic node type. Once this is done, the MMO transfer is automatically
handled for TableGen-driven instruction selection, and for nodes generated
directly in PPCISelDAGToDAG, we need to transfer the MMOs manually.
Also, we were not transferring MMOs associated with pre-increment loads, so do
that too.
Lastly, this fixes an exposed bug where R30 was not added as a defined operand of
UpdateGBR.
This problem was highlighted by an example (used to generate the test case)
posted to llvmdev by Francois Pichet.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230553 91177308-0d34-0410-b5e6-96231b3b80d8
The Win64 epilogue structure is very restrictive, it permits a very
small number of opcodes and none of them are 'mov'.
This means that given:
mov %rbp, %rsp
pop %rbp
The mov isn't the epilogue, only the pop is. This is problematic unless
a frame pointer is present in which case we are free to do whatever we'd
like in the "body" of the function. If a frame pointer is present,
unwinding will undo the prologue operations in reverse order regardless
of the fact that we are at an instruction which is reseting the stack
pointer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230543 91177308-0d34-0410-b5e6-96231b3b80d8
(The change was landed in r230280 and caused the regression PR22674.
This version contains a fix and a test-case for PR22674).
When emitting the increment operation, SCEVExpander marks the
operation as nuw or nsw based on the flags on the preincrement SCEV.
This is incorrect because, for instance, it is possible that {-6,+,1}
is <nuw> while {-6,+,1}+1 = {-5,+,1} is not.
This change teaches SCEV to mark the increment as nuw/nsw only if it
can explicitly prove that the increment operation won't overflow.
Apart from the attached test case, another (more realistic)
manifestation of the bug can be seen in
Transforms/IndVarSimplify/pr20680.ll.
Differential Revision: http://reviews.llvm.org/D7778
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230533 91177308-0d34-0410-b5e6-96231b3b80d8
Reapply r230248.
Teach the peephole optimizer to work with MMX instructions by adding
entries into the foldable tables. This covers folding opportunities not
handled during isel.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230499 91177308-0d34-0410-b5e6-96231b3b80d8
Thumb-1 only allows SP-based LDR and STR to be word-sized, and SP-base LDR,
STR, and ADD only allow offsets that are a multiple of 4. Make some changes
to better make use of these instructions:
* Use word loads for anyext byte and halfword loads from the stack.
* Enforce 4-byte alignment on objects accessed in this way, to ensure that
the offset is valid.
* Do the same for objects whose frame index is used, in order to avoid having
to use more than one ADD to generate the frame index.
* Correct how many bits of offset we think AddrModeT1_s has.
Patch by John Brawn.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230496 91177308-0d34-0410-b5e6-96231b3b80d8
This adds support for the QPX vector instruction set, which is used by the
enhanced A2 cores on the IBM BG/Q supercomputers. QPX vectors are 256 bytes
wide, holding 4 double-precision floating-point values. Boolean values, modeled
here as <4 x i1> are actually also represented as floating-point values
(essentially { -1, 1 } for { false, true }). QPX shares many features with
Altivec and VSX, but is distinct from both of them. One major difference is
that, instead of adding completely-separate vector registers, QPX vector
registers are extensions of the scalar floating-point registers (lane 0 is the
corresponding scalar floating-point value). The operations supported on QPX
vectors mirrors that supported on the scalar floating-point values (with some
additional ones for permutations and logical/comparison operations).
I've been maintaining this support out-of-tree, as part of the bgclang project,
for several years. This is not the entire bgclang patch set, but is most of the
subset that can be cleanly integrated into LLVM proper at this time. Adding
this to the LLVM backend is part of my efforts to rebase bgclang to the current
LLVM trunk, but is independently useful (especially for codes that use LLVM as
a JIT in library form).
The assembler/disassembler test coverage is complete. The CodeGen test coverage
is not, but I've included some tests, and more will be added as follow-up work.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230413 91177308-0d34-0410-b5e6-96231b3b80d8
This patch unifies the comdat and non-comdat code paths. By doing this
it add missing features to the comdat side and removes the fixed
section assumptions from the non-comdat side.
In ELF there is no one true section for "4 byte mergeable" constants.
We are better off computing the required properties of the section
and asking the context for it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230411 91177308-0d34-0410-b5e6-96231b3b80d8