BBVectorize would, except for loads and stores, always fuse instructions
so that the first instruction (in the current source order) would always
represent the low part of the input vectors and the second instruction
would always represent the high part. This lead to too many shuffles
being produced because sometimes the opposite order produces fewer of them.
With this change, BBVectorize tracks the kind of pair connections that form
the DAG of candidate pairs, and uses that information to reorder the pairs to
avoid excess shuffles. Using this information, a future commit will be able
to add VTTI-based shuffle costs to the pair selection procedure. Importantly,
the number of remaining shuffles can now be estimated during pair selection.
There are some trivial instruction reorderings in the test cases, and one
simple additional test where we certainly want to do a reordering to
avoid an unnecessary shuffle.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167122 91177308-0d34-0410-b5e6-96231b3b80d8
This patch migrates the strto* optimizations from the simplify-libcalls
pass into the instcombine library call simplifier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167119 91177308-0d34-0410-b5e6-96231b3b80d8
By propagating the value for the switch condition, LLVM can now build
lookup tables for code such as:
switch (x) {
case 1: return 5;
case 2: return 42;
case 3: case 4: case 5:
return x - 123;
default:
return 123;
}
Given that x is known for each case, "x - 123" becomes a constant for
cases 3, 4, and 5.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167115 91177308-0d34-0410-b5e6-96231b3b80d8
This patch migrates the strpbrk optimizations from the simplify-libcalls
pass into the instcombine library call simplifier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167105 91177308-0d34-0410-b5e6-96231b3b80d8
This patch migrates the strlen optimizations from the simplify-libcalls
pass into the instcombine library call simplifier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167103 91177308-0d34-0410-b5e6-96231b3b80d8
This patch migrates the strncpy optimizations from the simplify-libcalls
pass into the instcombine library call simplifier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167102 91177308-0d34-0410-b5e6-96231b3b80d8
This is important for loops in the LAPACK test-suite.
These loops start at 1 because they are auto-converted from fortran.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167084 91177308-0d34-0410-b5e6-96231b3b80d8
This patch migrates the stpcpy optimizations from the simplify-libcalls
pass into the instcombine library call simplifier. Note that the
__stpcpy_chk simplifications were migrated in a previous commit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167083 91177308-0d34-0410-b5e6-96231b3b80d8
r166198 migrated the strcpy optimization to instcombine. The strcpy
simplifier that was migrated from Transforms/Scalar/SimplifyLibCalls.cpp
was also doing some __strcpy_chk simplifications. Those fortified
simplifications were migrated as well, but introduced a bug in the
__stpcpy_chk simplifier in the process. This happened because the
__strcpy_chk and __stpcpy_chk simplifiers were both mapped to StrCpyChkOpt
which was updated with simplifications that worked for __strcpy_chk, but
not __stpcpy_chk.
This patch fixes the problem by adding proper test coverage and creating a
new simplifier for __stpcpy_chk (instead of sharing one with __strcpy_chk).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167082 91177308-0d34-0410-b5e6-96231b3b80d8
integers in that the code to handle split alloca-wide integer loads or
stores doesn't come first. It should, for the same reasons as with
integers, and the PR attests to that. Also had to fix a busted assert in
that this test case also covers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167051 91177308-0d34-0410-b5e6-96231b3b80d8
Instead of recomputing relative pointer information just prior to fusing,
cache this information (which also needs to be computed during the
candidate-pair selection process). This cuts down on the total number of
SE queries made, and also is a necessary intermediate step on the road toward
including shuffle costs in the pair selection procedure.
No functionality change is intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167049 91177308-0d34-0410-b5e6-96231b3b80d8
Stop propagating the FlipMemInputs variable into the routines that
create the replacement instructions. Instead, just flip the arguments
of those routines. This allows for some associated cleanup (not all
of which is done here). No functionality change is intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167042 91177308-0d34-0410-b5e6-96231b3b80d8
SE was being called during the instruction-fusion process (when the result
is unreliable, and thus ignored). No functionality change is intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167037 91177308-0d34-0410-b5e6-96231b3b80d8
When the switch-to-lookup tables transform landed in SimplifyCFG, it
was pointed out that this could be inappropriate for some targets.
Since there was no way at the time for the pass to know anything about
the target, an awkward reverse-transform was added in CodeGenPrepare
that turned lookup tables back into switches for some targets.
This patch uses the new TargetTransformInfo to determine if a
switch should be transformed, and removes
CodeGenPrepare::ConvertLoadToSwitch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167011 91177308-0d34-0410-b5e6-96231b3b80d8
checks to avoid performing compile-time arithmetic on PPCDoubleDouble.
Now that APFloat supports arithmetic on PPCDoubleDouble, those checks
are no longer needed, and we can treat the type like any other.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166958 91177308-0d34-0410-b5e6-96231b3b80d8
wrapper returns a vector of integers when passed a vector of pointers) by having
getIntPtrType itself return a vector of integers in this case. Outside of this
wrapper, I didn't find anywhere in the codebase that was relying on the old
behaviour for vectors of pointers, so give this a whirl through the buildbots.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166939 91177308-0d34-0410-b5e6-96231b3b80d8
split module can see each other. If it is keeping a symbol that already has
a non local linkage, it doesn't need to change it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166908 91177308-0d34-0410-b5e6-96231b3b80d8
output of both
llvm-extract foo.ll -func=bar
and
llvm-extract foo.ll -func=bar -delete
so the two new files could not be linked together anymore. With this change
alias are handled almost like functions and global variables. Almost because
with alias we cannot just clear the initializer/body, we have to create a new
declaration and replace the alias with it.
The net result is that now the output of the above commands can be linked
even if foo.ll has aliases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166907 91177308-0d34-0410-b5e6-96231b3b80d8
This turns loops like
for (unsigned i = 0; i != n; ++i)
p[i] = p[i+1];
into memmove, which has a highly optimized implementation in most libcs.
This was really easy with the new DependenceAnalysis :)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166875 91177308-0d34-0410-b5e6-96231b3b80d8
Requires a lot less code and complexity on loop-idiom's side and the more
precise analysis can catch more cases, like the one I included as a test case.
This also fixes the edge-case miscompilation from PR9481.
Compile time performance seems to be slightly worse, but this is mostly due
to an extra LCSSA run scheduled by the PassManager and should be fixed there.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166874 91177308-0d34-0410-b5e6-96231b3b80d8
The monolithic interface for instruction costs has been split into
several functions. This is the corresponding change. No functionality
change is intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166865 91177308-0d34-0410-b5e6-96231b3b80d8
Add getCostXXX calls for different families of opcodes, such as casts, arithmetic, cmp, etc.
Port the LoopVectorizer to the new API.
The LoopVectorizer now finds instructions which will remain uniform after vectorization. It uses this information when calculating the cost of these instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166836 91177308-0d34-0410-b5e6-96231b3b80d8
list of externals. This makes sense since a shared library with no symbols
can still be useful if it has static constructors.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166795 91177308-0d34-0410-b5e6-96231b3b80d8
This is currently true, but may change when DA grows more aggressive caching.
Without this setting it's impossible to use DA from a LoopPass because DA is a
function pass and cannot be properly scheduled in between LoopPasses. The
LoopManager reacts to this with an infinite loop which made this really annoying
to debug.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166788 91177308-0d34-0410-b5e6-96231b3b80d8
The LoopSimplify bug is pretty harmless because the loop goes from unanalyzable
to analyzable but the LCSSA bug is very nasty. It only comes into play with a
specific order of the LoopPassManager worklist and can cause actual
miscompilations, when a SCEV refers to a value that has been replaced with PHI
node. SCEVExpander may then insert code into the wrong place, either violating
domination or randomly miscompiling stuff.
Comes with an extensive test case reduced from the test-suite with
bugpoint+SCEVValidator.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166787 91177308-0d34-0410-b5e6-96231b3b80d8
This is needed so that perl's SHA can be compiled (otherwise
BBVectorize takes far too long to find its fixed point).
I'll try to come up with a reduced test case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166738 91177308-0d34-0410-b5e6-96231b3b80d8
This is the first of several steps to incorporate information from the new
TargetTransformInfo infrastructure into BBVectorize. Two things are done here:
1. Target information is used to determine if it is profitable to fuse two
instructions. This means that the cost of the vector operation must not
be more expensive than the cost of the two original operations. Pairs that
are not profitable are no longer considered (because current cost information
is incomplete, for intrinsics for example, equal-cost pairs are still
considered).
2. The 'cost savings' computed for the profitability check are also used to
rank the DAGs that represent the potential vectorization plans. Specifically,
for nodes of non-trivial depth, the cost savings is used as the node
weight.
The next step will be to incorporate the shuffle costs into the DAG weighting;
this will give the edges of the DAG weights as well. Once that is done, when
target information is available, we should be able to dispense with the
depth heuristic.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166716 91177308-0d34-0410-b5e6-96231b3b80d8