duplicate tests are eliminated (for example if the two functions both have
a catch clause catching the same type, ensure the redundant one is removed).
Note that it would probably be safe to say that eh.typeid.for is 'const',
but since two calls to it with the same argument can give different results
(but only if the calls are in different functions), it seems more correct to
mark it only 'pure'; this doesn't get in the way of the optimization.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139236 91177308-0d34-0410-b5e6-96231b3b80d8
(The fix for the related failures on x86 is going to be nastier because we actually need Acquire memoperands attached to the atomic load instrs, etc.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139221 91177308-0d34-0410-b5e6-96231b3b80d8
with a vector condition); such selects become VSELECT codegen nodes.
This patch also removes VSETCC codegen nodes, unifying them with SETCC
nodes (codegen was actually often using SETCC for vector SETCC already).
This ensures that various DAG combiner optimizations kick in for vector
comparisons. Passes dragonegg bootstrap with no testsuite regressions
(nightly testsuite as well as "make check-all"). Patch mostly by
Nadav Rotem.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139159 91177308-0d34-0410-b5e6-96231b3b80d8
init.trampoline and adjust.trampoline intrinsics, into two intrinsics
like in GCC. While having one combined intrinsic is tempting, it is
not natural because typically the trampoline initialization needs to
be done in one function, and the result of adjust trampoline is needed
in a different (nested) function. To get around this llvm-gcc hacks the
nested function lowering code to insert an additional parent variable
holding the adjust.trampoline result that can be accessed from the child
function. Dragonegg doesn't have the luxury of tweaking GCC code, so it
stored the result of adjust.trampoline in the memory GCC set aside for
the trampoline itself (this is always available in the child function),
and set up some new memory (using an alloca) to hold the trampoline.
Unfortunately this breaks Go which allocates trampoline memory on the
heap and wants to use it even after the parent has exited (!). Rather
than doing even more hacks to get Go working, it seemed best to just use
two intrinsics like in GCC. Patch mostly by Sanjoy Das.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139140 91177308-0d34-0410-b5e6-96231b3b80d8
- On COFF the .lcomm directive has an alignment argument.
- On ELF we fall back to .local + .comm
Based on a patch by NAKAMURA Takumi.
Fixes PR9337, PR9483 and PR10128.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@138976 91177308-0d34-0410-b5e6-96231b3b80d8
ssa, so it has to be run really early in the pipeline. Any replacement
should probably use the SSAUpdater.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@138841 91177308-0d34-0410-b5e6-96231b3b80d8
In the case of EDInstInfo, this would actually cause a bug when -1 became 255
and was then compared >=0 in llvm-mc/Disassembler.cpp.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@138825 91177308-0d34-0410-b5e6-96231b3b80d8
X86. Modify the pass added in the previous patch to call this new
code.
This new prologues generated will call a libgcc routine (__morestack)
to allocate more stack space from the heap when required
Patch by Sanjoy Das.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@138812 91177308-0d34-0410-b5e6-96231b3b80d8
Add a instruction flag: hasPostISelHook which tells the pre-RA scheduler to
call a target hook to adjust the instruction. For ARM, this is used to
adjust instructions which may be setting the 's' flag. ADC, SBC, RSB, and RSC
instructions have implicit def of CPSR (required since it now uses CPSR physical
register dependency rather than "glue"). If the carry flag is used, then the
target hook will *fill in* the optional operand with CPSR. Otherwise, the hook
will remove the CPSR implicit def from the MachineInstr.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@138810 91177308-0d34-0410-b5e6-96231b3b80d8
This upgrade suffers from the problems of the old EH scheme - i.e., that the
calls to llvm.eh.exception() and llvm.eh.selector() can wander off and get
lost. It makes a valiant effort to reclaim these little lost lambs.
This is a first draft, so it hasn't yet been hooked up to the parser.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@138602 91177308-0d34-0410-b5e6-96231b3b80d8
functionality into DEFINE_TRANSPARENT_OPERAND_ACCESSORS. A side-effect
of this is that the operand accessors for Constants will tolerate NULL
operands, fixing PR10663.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@138230 91177308-0d34-0410-b5e6-96231b3b80d8
SplitLandingPadPredecessors is similar to SplitBlockPredecessors in that it
splits the current block and attaches a set of predecessors to the new basic
block. However, it differs from SplitBlockPredecessors in that it's specifically
designed to handle landing pad blocks.
Two new basic blocks are created: one that is has the vector of predecessors as
its predecessors and one that has the remaining predecessors as its
predecessors. Those two new blocks then receive a cloned copy of the landingpad
instruction from the original block. The landingpad instructions are joined in a
PHI, etc. Like SplitBlockPredecessors, it updates the LLVM IR, AliasAnalysis,
DominatorTree, DominanceFrontier, LoopInfo, and LCCSA analyses.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@138014 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds support of NativeClient (*-*-nacl) OS support to LLVM.
It's already supported in autoconf/config.sub.
The motivation for this change is to start upstreaming PNaCl work. The
whole set of patches include llvm backends (i686, x86_64, ARM),
llvm-gcc (probably, would not be upstreamed because it's deprecated)
and clang (the work has been just started, the amount of changes is
going to be low and the most of the work is expected to be done close
to the mainline).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@138005 91177308-0d34-0410-b5e6-96231b3b80d8
The landingpad instruction is lowered into the EXCEPTIONADDR and EHSELECTION
SDNodes. The information from the landingpad instruction is harvested by the
'AddLandingPadInfo' function. The new EH uses the current EH scheme in the
back-end. This will change once we switch over to the new scheme. (Reviewed by
Jakob!)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137880 91177308-0d34-0410-b5e6-96231b3b80d8
MDNodes graph structure such that compiler unit keeps track of important MDNodes and update dwarf writer to process mdnodes top-down instead of bottom up.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137778 91177308-0d34-0410-b5e6-96231b3b80d8
getFirstInsertionPt() returns an iterator to the first insertion point in a
basic block. This is after all PHIs and any other instruction which is required
to be at the top of the basic block (like LandingPadInst).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137744 91177308-0d34-0410-b5e6-96231b3b80d8
Before 3.0, I'd like to add a mechanism for automatically loading a set of plugins from a config file. API suggestions welcome...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137717 91177308-0d34-0410-b5e6-96231b3b80d8
Allow a target assembly parser to do context sensitive constraint checking
on a potential instruction match. This will be used, for example, to handle
Thumb2 IT block parsing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137675 91177308-0d34-0410-b5e6-96231b3b80d8
This caused a race condition where a thread calls ~LLVMContextImpl which calls
Module::dropAllReferences which calls begin() on an empty ilist that would
create the sentinel, which racily accesses the global context.
This can not be fixed by locking inside createSentinel because the lock would
need to be shared with all users of the global context, including those that
reside outside LLVM's own code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137546 91177308-0d34-0410-b5e6-96231b3b80d8
This implements the 'landingpad' instruction. It's used to indicate that a basic
block is a landing pad. There are several restrictions on its use (see
LangRef.html for more detail). These restrictions allow the exception handling
code to gather the information it needs in a much more sane way.
This patch has the definition, implementation, C interface, parsing, and bitcode
support in it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137501 91177308-0d34-0410-b5e6-96231b3b80d8
when checking isNull(), we'd pick off the sentinel bit for the outer
PointerUnion, but would not recursively convert the inner pointerunion to bool,
so if *its* sentinel bit is set, isNull() would incorrectly return false.
No testcase, because someone hit this when they were trying to refactor code
to use PointerUnion3, but they since found a better solution.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137428 91177308-0d34-0410-b5e6-96231b3b80d8
SCEV unrolling can unroll loops with arbitrary induction variables. It
is a prerequisite for -disable-iv-rewrite performance. It is also
easily handles loops of arbitrary structure including multiple exits
and is generally more robust.
This is under a temporary option to avoid affecting default
behavior for the next couple of weeks. It is needed so that I can
checkin unit tests for updateUnloop.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137384 91177308-0d34-0410-b5e6-96231b3b80d8
An algorithm for incrementally updating LoopInfo within a
LoopPassManager. The incremental update should be extremely cheap in
most cases and can be used in places where it's not feasible to
regenerate the entire loop forest.
- "Unloop" is a node in the loop tree whose last backedge has been removed.
- Perform reverse dataflow on the block inside Unloop to propagate the
nearest loop from the block's successors.
- For reducible CFG, each block in unloop is visited exactly
once. This is because unloop no longer has a backedge and blocks
within subloops don't change parents.
- Immediate subloops are summarized by the nearest loop reachable from
their exits or exits within nested subloops.
- At completion the unloop blocks each have a new parent loop, and
each immediate subloop has a new parent.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137276 91177308-0d34-0410-b5e6-96231b3b80d8
based on ScalarEvolution without changing the induction variable phis.
This utility is the main tool of IndVarSimplifyPass, but the pass also
restructures induction variables in strange ways that are sensitive to
pass ordering. This provides a way for other loop passes to simplify
new uses of induction variables created during transformation. The
utility may be used by any pass that preserves ScalarEvolution. Soon
LoopUnroll will use it.
The net effect in this checkin is to cleanup the IndVarSimplify pass
by factoring out the SimplifyIndVar algorithm into a standalone utility.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137197 91177308-0d34-0410-b5e6-96231b3b80d8
These are not individual bug fixes. I had to rewrite a good chunk of
the unroller to make it sane. I think it was getting lucky on trivial
completely unrolled loops with no early exits. I included some fairly
simple unit tests for partial unrolling. I didn't do much stress
testing, so it may not be perfect, but should be usable now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137190 91177308-0d34-0410-b5e6-96231b3b80d8
This function doesn't have anything to do with spill weights, and MRI
already has functions for manipulating the register class of a virtual
register.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137123 91177308-0d34-0410-b5e6-96231b3b80d8
These the methods are target-independent since they simply scan the
memory operands. They can live in TargetInstrInfoImpl.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137063 91177308-0d34-0410-b5e6-96231b3b80d8