We supported transforming:
(gep i8* X, -(ptrtoint Y))
to:
(inttoptr (sub (ptrtoint X), (ptrtoint Y)))
However, this only fired if 'X' had type i8*. Generalize this to
support various types of different sizes. This results in much better
CodeGen, especially for pointers to packed structs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216523 91177308-0d34-0410-b5e6-96231b3b80d8
CFE, with -03, would turn:
bool f(unsigned x) {
bool a = x & 1;
bool b = x & 2;
return a | b;
}
into:
%1 = lshr i32 %x, 1
%2 = or i32 %1, %x
%3 = and i32 %2, 1
%4 = icmp ne i32 %3, 0
This sort of thing exposes a nasty pathology in GCC, ICC and LLVM.
Instead, we would rather want:
%1 = and i32 %x, 3
%2 = icmp ne i32 %1, 0
Things get a bit more interesting in the following case:
%1 = lshr i32 %x, %y
%2 = or i32 %1, %x
%3 = and i32 %2, 1
%4 = icmp ne i32 %3, 0
Replacing it with the following sequence is better:
%1 = shl nuw i32 1, %y
%2 = or i32 %1, 1
%3 = and i32 %2, %x
%4 = icmp ne i32 %3, 0
This sequence is preferable because %1 doesn't involve %x and could
potentially be hoisted out of loops if it is invariant; only perform
this transform in the non-constant case if we know we won't increase
register pressure.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216343 91177308-0d34-0410-b5e6-96231b3b80d8
Consider:
%add = add nuw i32 %a, -16777216
%and = and i32 %add, 255
Regardless of whether or not we demand the sign bit of %add, we cannot
replace -16777216 with 2130706432 without also removing 'nuw' from the
instruction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216273 91177308-0d34-0410-b5e6-96231b3b80d8
Consider:
%add = add nsw i32 %a, -16777216
%and = and i32 %add, 255
Regardless of whether or not we demand the sign bit of %add, we cannot
replace -16777216 with 2130706432 without also removing 'nsw' from the
instruction.
This fixes PR20377.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216261 91177308-0d34-0410-b5e6-96231b3b80d8
We can prove that a 'sub' can be a 'sub nuw' if the left-hand side is
negative and the right-hand side is non-negative.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216045 91177308-0d34-0410-b5e6-96231b3b80d8
We can prove that a 'sub' can be a 'sub nsw' under certain conditions:
- The sign bits of the operands is the same.
- Both operands have more than 1 sign bit.
The subtraction cannot be a signed overflow in either case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216037 91177308-0d34-0410-b5e6-96231b3b80d8
While this might seem like an obvious canonicalization, there is one subtle problem with it. The result of the original expression
is undef when x is NaN (remember, fast math flags), but the result of the select is always defined when x is NaN. This means that the
new expression is strictly more defined than the original one. One unfortunate consequence of this is that the transform is not reversible!
It's always legal to make increase the defined-ness of an expression, but it's not legal to reduce it. Thus, targets that prefer the original
form of the expression cannot reverse the transform to recover it. Another way to think of it is that the transform has lost source-level
information (the fast math flags), which is undesirable.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215825 91177308-0d34-0410-b5e6-96231b3b80d8
We can combne a mul with a div if one of the operands is a multiple of
the other:
%mul = mul nsw nuw %a, C1
%ret = udiv %mul, C2
=>
%ret = mul nsw %a, (C1 / C2)
This can expose further optimization opportunities if we end up
multiplying or dividing by a power of 2.
Consider this small example:
define i32 @f(i32 %a) {
%mul = mul nuw i32 %a, 14
%div = udiv exact i32 %mul, 7
ret i32 %div
}
which gets CodeGen'd to:
imull $14, %edi, %eax
imulq $613566757, %rax, %rcx
shrq $32, %rcx
subl %ecx, %eax
shrl %eax
addl %ecx, %eax
shrl $2, %eax
retq
We can now transform this into:
define i32 @f(i32 %a) {
%shl = shl nuw i32 %a, 1
ret i32 %shl
}
which gets CodeGen'd to:
leal (%rdi,%rdi), %eax
retq
This fixes PR20681.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215815 91177308-0d34-0410-b5e6-96231b3b80d8
What follows bellow is a correctness proof of the transform using CVC3.
$ < t.cvc
A, B : BITVECTOR(32);
QUERY BVPLUS(32, A & B, A | B) = BVPLUS(32, A, B);
$ cvc3 < t.cvc
Valid.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215400 91177308-0d34-0410-b5e6-96231b3b80d8
We can only propagate the nsw bits if both subtraction instructions are
marked with the appropriate bit.
N.B. We only propagate the nsw bit in InstCombine because the nuw case
is already handled in InstSimplify.
This fixes PR20189.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214385 91177308-0d34-0410-b5e6-96231b3b80d8
Before this patch we had
@a = weak global ...
but
@b = alias weak ...
The patch changes aliases to look more like global variables.
Looking at some really old code suggests that the reason was that the old
bison based parser had a reduction for alias linkages and another one for
global variable linkages. Putting the alias first avoided the reduce/reduce
conflict.
The days of the old .ll parser are long gone. The new one parses just "linkage"
and a later check is responsible for deciding if a linkage is valid in a
given context.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214355 91177308-0d34-0410-b5e6-96231b3b80d8
While we can already transform A | (A ^ B) into A | B, things get bad
once we have (A ^ B) | (A ^ B ^ Cst) because reassociation will morph
this into (A ^ B) | ((A ^ Cst) ^ B). Our existing patterns fail once
this happens.
To fix this, we add a new pattern which looks through the tree of xor
binary operators to see that, in fact, there exists a redundant xor
operation.
What follows bellow is a correctness proof of the transform using CVC3.
$ cat t.cvc
A, B, C : BITVECTOR(64);
QUERY BVXOR(A, B) | BVXOR(BVXOR(B, C), A) = BVXOR(A, B) | C;
QUERY BVXOR(BVXOR(A, C), B) | BVXOR(A, B) = BVXOR(A, B) | C;
QUERY BVXOR(A, B) & BVXOR(BVXOR(B, C), A) = BVXOR(A, B) & ~C;
QUERY BVXOR(BVXOR(A, C), B) & BVXOR(A, B) = BVXOR(A, B) & ~C;
$ cvc3 < t.cvc
Valid.
Valid.
Valid.
Valid.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214342 91177308-0d34-0410-b5e6-96231b3b80d8
It handles the errors which were seen in PR19958 where wrong code was being emitted due to earlier patch.
Added code for lshr as well as non-exact right shifts.
It implements :
(icmp eq/ne (ashr/lshr const2, A), const1)" ->
(icmp eq/ne A, Log2(const2/const1)) ->
(icmp eq/ne A, Log2(const2) - Log2(const1))
Differential Revision: http://reviews.llvm.org/D4068
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213678 91177308-0d34-0410-b5e6-96231b3b80d8
We previously supported the align attribute on all (pointer) parameters, but we
only used it for byval parameters. However, it is completely consistent at the
IR level to treat 'align n' on all pointer parameters as an alignment
assumption on the pointer, and now we wll. Specifically, this causes
computeKnownBits to use the align attribute on all pointer parameters, not just
byval parameters. I've also added an explicit parameter attribute test for this
to test/Bitcode/attributes.ll.
And I've updated the LangRef to document the align parameter attribute (as it
turns out, it was not documented at all previously, although the byval
documentation mentioned that it could be used).
There are (at least) two benefits to doing this:
- It allows enhancing alignment based on the pointer alignment after inlining callees.
- It allows simplification of pointer arithmetic.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213670 91177308-0d34-0410-b5e6-96231b3b80d8
Fix a crash in `InstCombiner::Descale()` when a multiply-by-zero gets
created as an argument to a GEP partway through an iteration, causing
-instcombine to optimize the GEP before the multiply.
rdar://problem/17615671
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212742 91177308-0d34-0410-b5e6-96231b3b80d8
In PR20059 ( http://llvm.org/pr20059 ), instcombine eliminates shuffles that are necessary before performing an operation that can trap (srem).
This patch calls isSafeToSpeculativelyExecute() and bails out of the optimization in SimplifyVectorOp() if needed.
Differential Revision: http://reviews.llvm.org/D4424
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212629 91177308-0d34-0410-b5e6-96231b3b80d8
It is not safe to negate the smallest signed integer, doing so yields
the same number back.
This fixes PR20186.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212164 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
With this patch, range metadata can be added to call/invoke including
IntrinsicInst. Previously, it could only be added to load.
Rename computeKnownBitsLoad to computeKnownBitsFromRangeMetadata because
range metadata is not only used by load.
Update the language reference to reflect this change.
Test Plan:
Add several tests in range-2.ll to confirm the verifier is happy with
having range metadata on call/invoke.
Add two tests in AddOverFlow.ll to confirm annotating range metadata to
call/invoke can benefit InstCombine.
Reviewers: meheff, nlewycky, reames, hfinkel, eliben
Reviewed By: eliben
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D4187
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211281 91177308-0d34-0410-b5e6-96231b3b80d8
* Find factorization opportunities using identity values.
* Find factorization opportunities by treating shl(X, C) as mul (X, shl(C))
* Keep NSW flag while simplifying instruction using factorization.
This fixes PR19263.
Differential Revision: http://reviews.llvm.org/D3799
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211261 91177308-0d34-0410-b5e6-96231b3b80d8