Otherwise we'll attempt to forward ECX, EDX, and EAX for cdecl and
stdcall thunks, leaving us with no scratch registers for indirect call
targets.
Fixes PR22052.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225729 91177308-0d34-0410-b5e6-96231b3b80d8
templated interface.
So far, every single IR unit I can come up with has address-identity.
That is, when two units of IR are both active in LLVM, their addresses
will be distinct of the IR is distinct. This is clearly true for
Modules, Functions, BasicBlocks, and Instructions. It turns out that the
only practical way to make the CGSCC stuff work the way we want is to
make it true for SCCs as well. I expect this pattern to continue.
When first designing the pass manager code, I kept this dimension of
freedom in the type parameters, essentially allowing for a wrapper-type
whose address did not form identity. But that really no longer makes
sense and is making the code more complex or subtle for no gain. If we
ever have an actual use case for this, we can figure out what makes
sense then and there. It will be better because then we will have the
actual example in hand.
While the simplifications afforded in this patch are fairly small
(mostly sinking the '&' out of many type parameters onto a few
interfaces), it would have become much more pronounced with subsequent
changes. I have a sequence of changes that will completely remove the
code duplication that currently exists between all of the pass managers
and analysis managers. =] Should make things much cleaner and avoid bug
fixing N times for the N pass managers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225723 91177308-0d34-0410-b5e6-96231b3b80d8
r225551 vector byte shuffle optimization caused an assertion as fully zeroable vectors can be produced under certain circumstances. This fix drops the assert and returns a zero vector where the assert would have failed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225718 91177308-0d34-0410-b5e6-96231b3b80d8
Refactor logic so that we know up-front whether to open a block and
whether we need an MDString abbreviation.
This is almost NFC, but will start emitting `MDString` abbreviations
when the first record is not an `MDString`.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225712 91177308-0d34-0410-b5e6-96231b3b80d8
Use subclass API instead of the wrappers in `MDNode` in the assembly
parser. This will make the code easier to follow once we have multiple
subclasses.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225711 91177308-0d34-0410-b5e6-96231b3b80d8
into a new class DwarfExpression that can be shared between AsmPrinter
and DwarfUnit.
This is the first step towards unifying the two entirely redundant
implementations of dwarf expression emission in DwarfUnit and AsmPrinter.
Almost no functional change — Testcases were updated because asm comments
that used to be on two lines now appear on the same line, which is
actually preferable.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225706 91177308-0d34-0410-b5e6-96231b3b80d8
Remove special parsing logic for metadata attachments. Now that
`DebugLoc` is stored normally (since the metadata/value split), we don't
need this special forward referencing logic.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225698 91177308-0d34-0410-b5e6-96231b3b80d8
Add generic dispatch for the parts of `UniquableMDNode` that cast to
`MDTuple`. This makes adding other subclasses (like PR21433's
`MDLocation`) easier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225697 91177308-0d34-0410-b5e6-96231b3b80d8
Stop erasing `MDNode`s from the uniquing sets in `LLVMContextImpl`
during teardown (in particular, during
`UniquableMDNode::~UniquableMDNode()`). Although it's currently
feasible, there isn't any clear benefit and it may not be feasible for
other subclasses (which don't explicitly store the lookup hash).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225696 91177308-0d34-0410-b5e6-96231b3b80d8
This happens in the HINT benchmark, where the SLP-vectorizer created
v2f32 fcmp/select code. The "correct" solution would have been to
teach the vectorizer cost model that v2f32 isn't legal (because really,
it isn't), but if we can vectorize we might as well do so.
We legalize these v2f32 FMIN/FMAX nodes by widening to v4f32 later on.
v3f32 were already widened to v4f32 by the generic unroll-and-build-vector
legalization.
rdar://15763436
Differential Revision: http://reviews.llvm.org/D6557
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225691 91177308-0d34-0410-b5e6-96231b3b80d8
Same as with `MDTuple`, factor out a `friend MDNode` by moving creation
logic to the concrete subclass.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225690 91177308-0d34-0410-b5e6-96231b3b80d8
Move creation logic for `MDTuple`s down where it belongs. Once there
are a few more subclasses, these functions really won't make much sense
here (the `friend` relationship was already awkward). For now, leave
the `MDNode` versions around, but have it forward down.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225685 91177308-0d34-0410-b5e6-96231b3b80d8
Split `GenericMDNode` into two classes (with more descriptive names).
- `UniquableMDNode` will be a common subclass for `MDNode`s that are
sometimes uniqued like constants, and sometimes 'distinct'.
This class gets the (short-lived) RAUW support and related API.
- `MDTuple` is the basic tuple that has always been returned by
`MDNode::get()`. This is as opposed to more specific nodes to be
added soon, which have additional fields, custom assembly syntax,
and extra semantics.
This class gets the hash-related logic, since other sublcasses of
`UniquableMDNode` may need to hash based on other fields.
To keep this diff from getting too big, I've added casts to `MDTuple`
that won't really scale as new subclasses of `UniquableMDNode` are
added, but I'll clean those up incrementally.
(No functionality change intended.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225682 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: I think this is probably a bug, but I'm putting this up for review just to be sure. I think that `lit.util.capture` should decode the resulting string in the same way `lit.util.executeCommand` does.
Reviewers: ddunbar, EricWF
Reviewed By: EricWF
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D6769
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225681 91177308-0d34-0410-b5e6-96231b3b80d8
Instead of returning early on `handleChangedOperand()` recursion
(finally identified (and test added) in r225657), prevent it upfront by
releasing operands before RAUW.
Aside from massively different program flow, there should be no
functionality change ;).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225665 91177308-0d34-0410-b5e6-96231b3b80d8
There are some operands which can take either immediates or registers
and we were previously using different register class to distinguish
between operands that could take immediates and those that could not.
This patch switches to using RegisterOperands which should simplify the
backend by reducing the number of register classes and also make it
easier to implement the assembler.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225662 91177308-0d34-0410-b5e6-96231b3b80d8
This adds two new fields to the RegisterOperand TableGen class:
string OperandNamespace = "MCOI";
string OperandType = "OPERAND_REGISTER";
These fields can be used to specify a target specific operand type,
which will be stored in the OperandType member of the MCOperandInfo
object.
This can be useful for targets that need to store some extra information
about operands that cannot be expressed using the target independent
types. For example, in the R600 backend, there are operands which
can take either registers or immediates and it is convenient to be able
to specify this in the TableGen definitions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225661 91177308-0d34-0410-b5e6-96231b3b80d8