This is useful for some ARM intrinsics such as VCVTN which does a <4 x float> <-> <4 x half> conversion.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191870 91177308-0d34-0410-b5e6-96231b3b80d8
This makes it possible to add timers to the code generator and still use them
with -plugin-opt=emit-llvm.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191866 91177308-0d34-0410-b5e6-96231b3b80d8
classes that are marked as Variant as those require an MI to pass to
SubTargetInfo::resolveSchedClass.
This is part of <rdar://problem/14687488>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191864 91177308-0d34-0410-b5e6-96231b3b80d8
Don't vectorize with a runtime check if it requires a
comparison between pointers with different address spaces.
The values can't be assumed to be directly comparable.
Previously it would create an illegal bitcast.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191862 91177308-0d34-0410-b5e6-96231b3b80d8
disassembled output alongside the instructions.
E.g., on a vector shuffle operation with a memory operand, disassembled
outputs are:
* Without the option:
vpshufd $-0x79, (%rsp), %xmm0
* With the option:
vpshufd $-0x79, (%rsp), %xmm0 ## Latency: 5
The printed latency is extracted from the schedule model available in the
disassembler context. Thus, this option has no effect if there is not a
scheduling model for the target.
This boils down to one may need to specify the CPU string, so that this
option could have an effect.
Note: Latency < 2 are not printed.
This part of <rdar://problem/14687488>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191859 91177308-0d34-0410-b5e6-96231b3b80d8
This recursively strips all GEPs like the existing code. It also handles bitcasts and
other operations that do not change the pointer value.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191847 91177308-0d34-0410-b5e6-96231b3b80d8
At this time only Unix-based systems are supported. Windows has stubs and should re-route to the simulated mode.
Thanks to Sriram Murali for contributions to this patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191843 91177308-0d34-0410-b5e6-96231b3b80d8
Switch instructions were crashing the StructurizeCFG pass, and it's
probably easier anyway if we don't need to handle them in this pass.
Reviewed-by: Christian König <christian.koenig@amd.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191841 91177308-0d34-0410-b5e6-96231b3b80d8
infrastructure.
This was essentially work toward PGO based on a design that had several
flaws, partially dating from a time when LLVM had a different
architecture, and with an effort to modernize it abandoned without being
completed. Since then, it has bitrotted for several years further. The
result is nearly unusable, and isn't helping any of the modern PGO
efforts. Instead, it is getting in the way, adding confusion about PGO
in LLVM and distracting everyone with maintenance on essentially dead
code. Removing it paves the way for modern efforts around PGO.
Among other effects, this removes the last of the runtime libraries from
LLVM. Those are being developed in the separate 'compiler-rt' project
now, with somewhat different licensing specifically more approriate for
runtimes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191835 91177308-0d34-0410-b5e6-96231b3b80d8
I really should sort it or do something more sustainable, but I couldn't
work up the energy to do it... Sorry.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191832 91177308-0d34-0410-b5e6-96231b3b80d8
This was broken when options were moved up in r191680. No test because this is
specific LLVMgold.so/libLTO.so.
Patch by Tom Roeder!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191829 91177308-0d34-0410-b5e6-96231b3b80d8
line just to add or remove a single element. What I wouldn't give to
have clang-format here an be able to format this more densely without
caring...
Re-group and sort the entries while here to make the whole thing more
clear.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191828 91177308-0d34-0410-b5e6-96231b3b80d8
Enable building the LTO library (.lib and.dll) and llvm-lto.exe on Windows with
MSVC and Mingw as well as re-enabling the associated test.
Patch by Greg Bedwell!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191823 91177308-0d34-0410-b5e6-96231b3b80d8
It's useful for the memory managers that are allocating a section to know what the name of the section is.
At a minimum, this is useful for low-level debugging - it's customary for JITs to be able to tell you what
memory they allocated, and as part of any such dump, they should be able to tell you some meta-data about
what each allocation is for. This allows clients that supply their own memory managers to do this.
Additionally, we also envision the SectionName being useful for passing meta-data from within LLVM to an LLVM
client.
This changes both the C and C++ APIs, and all of the clients of those APIs within LLVM. I'm assuming that
it's safe to change the C++ API because that API is allowed to change. I'm assuming that it's safe to change
the C API because we haven't shipped the API in a release yet (LLVM 3.3 doesn't include the MCJIT memory
management C API).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191804 91177308-0d34-0410-b5e6-96231b3b80d8
is updated to use DITypeRef.
Move isUnsignedDIType and getOriginalTypeSize from DebugInfo.h to be static
helper functions in DwarfCompileUnit. We already have a static helper function
"isTypeSigned" in DwarfCompileUnit, and a pointer to DwarfDebug is added to
resolve the derived-from field. All three functions need to go across link
for derived-from fields, so we need to get hold of a type identifier map.
A pointer to DwarfDebug is also added to DbgVariable in order to resolve the
derived-from field.
Debug info verifier is updated to check a derived-from field is a TypeRef.
Verifier will not go across link for derived-from fields, in debug info finder,
we go across the link to add derived-from fields to types.
Function getDICompositeType is only used by dragonegg and since dragonegg does
not generate identifier for types, we use an empty map to resolve the
derived-from field.
When printing a derived-from field, we use DITypeRef::getName to either return
the type identifier or getName of the DIType.
A paired commit at clang is required due to changes to DIBuilder.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191800 91177308-0d34-0410-b5e6-96231b3b80d8
comments issued with verbose assembly.
E.g., on a vector shuffle operation, disassembled output are:
* Without the option:
vpshufd $-0x79, (%rsp), %xmm0
* With the option:
vpshufd $-0x79, (%rsp), %xmm0 ## xmm0 = mem[3,1,0,2]
This part of <rdar://problem/14687488>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191799 91177308-0d34-0410-b5e6-96231b3b80d8
and it is shared across CUs.
We add a few maps in DwarfDebug to map MDNodes for the type system to the
corresponding DIEs: MDTypeNodeToDieMap, MDSPNodeToDieMap, and
MDStaticMemberNodeToDieMap. These DIEs can be shared across CUs, that is why we
keep the maps in DwarfDebug instead of CompileUnit.
Sometimes, when we try to add an attribute to a DIE, the DIE is not yet added
to its owner yet, so we don't know whether we should use ref_addr or ref4.
We create a worklist that will be processed during finalization to add
attributes with the correct form (ref_addr or ref4).
We add addDIEEntry to DwarfDebug to be a wrapper around DIE->addValue. It checks
whether we know the correct form, if not, we update the worklist
(DIEEntryWorklist).
A testing case is added to show that we only create a single DIE for a type
MDNode and we use ref_addr to refer to the type DIE.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191792 91177308-0d34-0410-b5e6-96231b3b80d8
that each comment ends with a newline to match the definition in the header
file.
This is part of <rdar://problem/14687488>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191787 91177308-0d34-0410-b5e6-96231b3b80d8