Indirect tail-calls shouldn't use R9 for the branch destination, as
it's not reliably a call-clobbered register.
rdar://14793425
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188967 91177308-0d34-0410-b5e6-96231b3b80d8
When truncated vector stores were being custom lowered in
VectorLegalizer::LegalizeOp(), the old (illegal) and new (legal) node pair
was not being added to LegalizedNodes list. Instead of the legalized
result being passed to VectorLegalizer::TranslateLegalizeResult(),
the result was being passed back into VectorLegalizer::LegalizeOp(),
which ended up adding a (new, new) pair to the list instead.
This was causing an assertion failure when a custom lowered truncated
vector store was the last instruction a basic block and the VectorLegalizer
was unable to find it in the LegalizedNodes list when updating the
DAG root.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188953 91177308-0d34-0410-b5e6-96231b3b80d8
The small utility function that pattern matches Base + Index +
Offset patterns for loads and stores fails to recognize the base
pointer for loads/stores from/into an array at offset 0 inside a
loop. As a result DAGCombiner::MergeConsecutiveStores was not able
to merge all stores.
This commit fixes the issue by adding an additional pattern match
and also a test case.
Reviewer: Nadav
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188936 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This support will be utilized in things like clang to help check printf
format specifiers that are only valid when using the VSCRT.
Reviewers: rnk, asl, chandlerc
Reviewed By: chandlerc
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1455
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188935 91177308-0d34-0410-b5e6-96231b3b80d8
Allow CMake to pick up external projects in llvm/tools without the need to modify the "llvm/tools/CMakeLists.txt" file.
This makes it easier to work with projects that live in other repositories, without needing to specify each one in "llvm/tools/CMakeLists.txt".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188921 91177308-0d34-0410-b5e6-96231b3b80d8
def imm0_63 : Operand<i32>, ImmLeaf<i32, [{ return Imm >= 0 && Imm < 63;}]>{
As it seems Imm <63 should be Imm <= 63. ImmLeaf is used in pattern match, but there is already a function check the shift amount range, so just remove ImmLeaf. Also add a test to check 63.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188911 91177308-0d34-0410-b5e6-96231b3b80d8
Offset in mmap(3) should be aligned to gepagesize(), 64k, or mmap(3) would fail.
TODO: Invetigate places where 4096 would be required as pagesize, or 4096 would satisfy.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188903 91177308-0d34-0410-b5e6-96231b3b80d8
According to the ARM specification, "mov" is a valid mnemonic for all Thumb2 MOV encodings.
To achieve this, the patch adds one instruction alias with a special range condition to avoid collision with the Thumb1 MOV.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188901 91177308-0d34-0410-b5e6-96231b3b80d8
The initial port used MLG(R) for i64 UMUL_LOHI but left the other three
combinations as not-legal-or-custom. Although 32x32->{32,32}
multiplications exist, they're not as quick as doing a normal 64-bit
multiplication, so it didn't seem like i32 SMUL_LOHI and UMUL_LOHI
would be useful. There's also no direct instruction for i64 SMUL_LOHI,
so it needs to be implemented in terms of UMUL_LOHI.
However, not defining these patterns means that we don't convert
division by a constant into multiplication, so this patch fills
in the other cases. The new i64 SMUL_LOHI sequence is simpler
than the one that we used previously for 64x64->128 multiplication,
so int-mul-08.ll now tests the full sequence.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188898 91177308-0d34-0410-b5e6-96231b3b80d8
I accidentally changed the encoding of the MSA registers to zero instead of 0
to 31. This change restores the encoding the registers had prior to r188893.
This didn't show up in the existing tests because direct-object emission isn't
implemented yet for MSA.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188896 91177308-0d34-0410-b5e6-96231b3b80d8
These are extensions of the existing FI[EDX]BR instructions, but use a spare
bit to suppress inexact conditions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188894 91177308-0d34-0410-b5e6-96231b3b80d8
Like yaml ObjectFiles, this will be very useful for testing the MC CFG
implementation (mostly MCObjectDisassembler), by matching the output
with YAML, and for potential users of the MC CFG, by using it as an input.
There isn't much to the actual format, it is just a serialization of the
MCModule class. Of note:
- Basic block references (pred/succ, ..) are represented by the BB's
start address.
- Just as in the MC CFG, instructions are MCInsts with a size.
- Operands have a prefix representing the type (only register and
immediate supported here).
- Instruction opcodes are represented by their names; enum values aren't
stable, enum names mostly are: usually, a change to a name would need
lots of changes in the backend anyway.
Same with registers.
All in all, an example is better than 1000 words, here goes:
A simple binary:
Disassembly of section __TEXT,__text:
_main:
100000f9c: 48 8b 46 08 movq 8(%rsi), %rax
100000fa0: 0f be 00 movsbl (%rax), %eax
100000fa3: 3b 04 25 48 00 00 00 cmpl 72, %eax
100000faa: 0f 8c 07 00 00 00 jl 7 <.Lend>
100000fb0: 2b 04 25 48 00 00 00 subl 72, %eax
.Lend:
100000fb7: c3 ret
And the (pretty verbose) generated YAML:
---
Atoms:
- StartAddress: 0x0000000100000F9C
Size: 20
Type: Text
Content:
- Inst: MOV64rm
Size: 4
Ops: [ RRAX, RRSI, I1, R, I8, R ]
- Inst: MOVSX32rm8
Size: 3
Ops: [ REAX, RRAX, I1, R, I0, R ]
- Inst: CMP32rm
Size: 7
Ops: [ REAX, R, I1, R, I72, R ]
- Inst: JL_4
Size: 6
Ops: [ I7 ]
- StartAddress: 0x0000000100000FB0
Size: 7
Type: Text
Content:
- Inst: SUB32rm
Size: 7
Ops: [ REAX, REAX, R, I1, R, I72, R ]
- StartAddress: 0x0000000100000FB7
Size: 1
Type: Text
Content:
- Inst: RET
Size: 1
Ops: [ ]
Functions:
- Name: __text
BasicBlocks:
- Address: 0x0000000100000F9C
Preds: [ ]
Succs: [ 0x0000000100000FB7, 0x0000000100000FB0 ]
<snip>
...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188890 91177308-0d34-0410-b5e6-96231b3b80d8
Supports:
- entrypoint, using LC_MAIN.
- static ctors/dtors, using __mod_{init,exit}_func
- translation between effective and object load address, using
dyld's VM address slide.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188886 91177308-0d34-0410-b5e6-96231b3b80d8
It can now disassemble code in situations where the effective load
address is different than the load address declared in the object file.
This happens for PIC, hence "dynamic".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188884 91177308-0d34-0410-b5e6-96231b3b80d8
This is the behavior of sequential disassemblers (llvm-objdump, ...),
when there is no instruction size hint (fixed-length, ...)
While there, also do some minor cleanup.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188883 91177308-0d34-0410-b5e6-96231b3b80d8