The current remark is ambiguous and makes it sounds like explicitly specifying vectorization will allow the loop to be vectorized. This is not the case. The improved remark directs the user to -Rpass-analysis=loop-vectorize to determine the cause of the pass-miss.
Reviewed by Arnold Schwaighofer`
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214445 91177308-0d34-0410-b5e6-96231b3b80d8
Switch array type shadow from a single integer to
an array of integers (i.e. make it per-element).
This simplifies instrumentation of extractvalue and fixes PR20493.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214398 91177308-0d34-0410-b5e6-96231b3b80d8
We can only propagate the nsw bits if both subtraction instructions are
marked with the appropriate bit.
N.B. We only propagate the nsw bit in InstCombine because the nuw case
is already handled in InstSimplify.
This fixes PR20189.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214385 91177308-0d34-0410-b5e6-96231b3b80d8
While we can already transform A | (A ^ B) into A | B, things get bad
once we have (A ^ B) | (A ^ B ^ Cst) because reassociation will morph
this into (A ^ B) | ((A ^ Cst) ^ B). Our existing patterns fail once
this happens.
To fix this, we add a new pattern which looks through the tree of xor
binary operators to see that, in fact, there exists a redundant xor
operation.
What follows bellow is a correctness proof of the transform using CVC3.
$ cat t.cvc
A, B, C : BITVECTOR(64);
QUERY BVXOR(A, B) | BVXOR(BVXOR(B, C), A) = BVXOR(A, B) | C;
QUERY BVXOR(BVXOR(A, C), B) | BVXOR(A, B) = BVXOR(A, B) | C;
QUERY BVXOR(A, B) & BVXOR(BVXOR(B, C), A) = BVXOR(A, B) & ~C;
QUERY BVXOR(BVXOR(A, C), B) & BVXOR(A, B) = BVXOR(A, B) & ~C;
$ cvc3 < t.cvc
Valid.
Valid.
Valid.
Valid.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214342 91177308-0d34-0410-b5e6-96231b3b80d8
The lifetime intrinsics need some work in order to make it clear which
optimizations are or are not valid.
For now dropping this optimization avoids a miscompilation.
Patch by Björn Steinbrink.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214336 91177308-0d34-0410-b5e6-96231b3b80d8
DITypeArray is an array of DITypeRef, at its creation, we will create
DITypeRef (i.e use the identifier if the type node has an identifier).
This is the last patch to unique the type array of a subroutine type.
rdar://17628609
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214132 91177308-0d34-0410-b5e6-96231b3b80d8
This is the second of a series of patches to handle type uniqueing of the
type array for a subroutine type.
For vector and array types, getElements returns the array of subranges, so it
is a better name than getTypeArray. Even for class, struct and enum types,
getElements returns the members, which can be subprograms.
setArrays can set up to two arrays, the second is the templates.
This commit should have no functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214112 91177308-0d34-0410-b5e6-96231b3b80d8
This is the first commit in a series that add an @llvm.assume intrinsic which
can be used to provide the optimizer with a condition it may assume to be true
(when the control flow would hit the intrinsic call). Some basic properties are added here:
- llvm.invariant(true) is dead.
- llvm.invariant(false) is unreachable (this directly corresponds to the
documented behavior of MSVC's __assume(0)), so is llvm.invariant(undef).
The intrinsic is tagged as writing arbitrarily, in order to maintain control
dependencies. BasicAA has been updated, however, to return NoModRef for any
particular location-based query so that we don't unnecessarily block code
motion.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213973 91177308-0d34-0410-b5e6-96231b3b80d8
Ugh. Turns out not even transformation passes link in how to read IR.
I sincerely believe the buildbots will finally agree with my system
after this though. (I don't really understand why all of this has been
working on my system, but not on all the buildbots.)
Create a new tool called llvm-uselistorder to use for verifying use-list
order. For now, just dump everything from the (now defunct)
-verify-use-list-order pass into the tool.
This might be a better way to test use-list order anyway.
Part of PR5680.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213957 91177308-0d34-0410-b5e6-96231b3b80d8
This functionality is currently turned off by default.
Part of the motivation for introducing scoped-noalias metadata is to enable the
preservation of noalias parameter attribute information after inlining.
Sometimes this can be inferred from the code in the caller after inlining, but
often we simply lose valuable information.
The overall process if fairly simple:
1. Create a new unqiue scope domain.
2. For each (used) noalias parameter, create a new alias scope.
3. For each pointer, collect the underlying objects. Add a noalias scope for
each noalias parameter from which we're not derived (and has not been
captured prior to that point).
4. Add an alias.scope for each noalias parameter from which we might be
derived (or has been captured before that point).
Note that the capture checks apply only if one of the underlying objects is not
an identified function-local object.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213949 91177308-0d34-0410-b5e6-96231b3b80d8
The dragonegg buildbot (and others?) started failing after
r213945/r213946 because `llvm-as` wasn't linking in the bitcode reader.
I think moving the verify functions to the same file as the verify pass
should fix the build. Adding a command-line option for maintaining
use-list order in assembly as a drive-by to prevent warnings about
unused static functions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213947 91177308-0d34-0410-b5e6-96231b3b80d8
Add a -verify-use-list-order pass, which shuffles use-list order, writes
to bitcode, reads back, and verifies that the (shuffled) order matches.
- The utility functions live in lib/IR/UseListOrder.cpp.
- Moved (and renamed) the command-line option to enable writing
use-lists, so that this pass can return early if the use-list orders
aren't being serialized.
It's not clear that this pass is the right direction long-term (perhaps
a separate tool instead?), but short-term it's a great way to test the
use-list order prototype. I've added an XFAIL-ed testcase that I'm
hoping to get working pretty quickly.
This is part of PR5680.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213945 91177308-0d34-0410-b5e6-96231b3b80d8
hint) the loop unroller replaces the llvm.loop.unroll.count metadata with
llvm.loop.unroll.disable metadata to prevent any subsequent unrolling
passes from unrolling more than the hint indicates. This patch fixes
an issue where loop unrolling could be disabled for other loops as well which
share the same llvm.loop metadata.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213900 91177308-0d34-0410-b5e6-96231b3b80d8
This commit adds scoped noalias metadata. The primary motivations for this
feature are:
1. To preserve noalias function attribute information when inlining
2. To provide the ability to model block-scope C99 restrict pointers
Neither of these two abilities are added here, only the necessary
infrastructure. In fact, there should be no change to existing functionality,
only the addition of new features. The logic that converts noalias function
parameters into this metadata during inlining will come in a follow-up commit.
What is added here is the ability to generally specify noalias memory-access
sets. Regarding the metadata, alias-analysis scopes are defined similar to TBAA
nodes:
!scope0 = metadata !{ metadata !"scope of foo()" }
!scope1 = metadata !{ metadata !"scope 1", metadata !scope0 }
!scope2 = metadata !{ metadata !"scope 2", metadata !scope0 }
!scope3 = metadata !{ metadata !"scope 2.1", metadata !scope2 }
!scope4 = metadata !{ metadata !"scope 2.2", metadata !scope2 }
Loads and stores can be tagged with an alias-analysis scope, and also, with a
noalias tag for a specific scope:
... = load %ptr1, !alias.scope !{ !scope1 }
... = load %ptr2, !alias.scope !{ !scope1, !scope2 }, !noalias !{ !scope1 }
When evaluating an aliasing query, if one of the instructions is associated
with an alias.scope id that is identical to the noalias scope associated with
the other instruction, or is a descendant (in the scope hierarchy) of the
noalias scope associated with the other instruction, then the two memory
accesses are assumed not to alias.
Note that is the first element of the scope metadata is a string, then it can
be combined accross functions and translation units. The string can be replaced
by a self-reference to create globally unqiue scope identifiers.
[Note: This overview is slightly stylized, since the metadata nodes really need
to just be numbers (!0 instead of !scope0), and the scope lists are also global
unnamed metadata.]
Existing noalias metadata in a callee is "cloned" for use by the inlined code.
This is necessary because the aliasing scopes are unique to each call site
(because of possible control dependencies on the aliasing properties). For
example, consider a function: foo(noalias a, noalias b) { *a = *b; } that gets
inlined into bar() { ... if (...) foo(a1, b1); ... if (...) foo(a2, b2); } --
now just because we know that a1 does not alias with b1 at the first call site,
and a2 does not alias with b2 at the second call site, we cannot let inlining
these functons have the metadata imply that a1 does not alias with b2.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213864 91177308-0d34-0410-b5e6-96231b3b80d8
In order to enable the preservation of noalias function parameter information
after inlining, and the representation of block-level __restrict__ pointer
information (etc.), additional kinds of aliasing metadata will be introduced.
This metadata needs to be carried around in AliasAnalysis::Location objects
(and MMOs at the SDAG level), and so we need to generalize the current scheme
(which is hard-coded to just one TBAA MDNode*).
This commit introduces only the necessary refactoring to allow for the
introduction of other aliasing metadata types, but does not actually introduce
any (that will come in a follow-up commit). What it does introduce is a new
AAMDNodes structure to hold all of the aliasing metadata nodes associated with
a particular memory-accessing instruction, and uses that structure instead of
the raw MDNode* in AliasAnalysis::Location, etc.
No functionality change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213859 91177308-0d34-0410-b5e6-96231b3b80d8
We use gep to access the global array "switch.table", and the table index
should be treated as unsigned. When the highest bit is 1, this commit
zero-extends the index to an integer type with larger size.
For a switch on i2, we used to generate:
%switch.tableidx = sub i2 %0, -2
getelementptr inbounds [4 x i64]* @switch.table, i32 0, i2 %switch.tableidx
It is incorrect when %switch.tableidx is 2 or 3. The fix is to generate
%switch.tableidx = sub i2 %0, -2
%switch.tableidx.zext = zext i2 %switch.tableidx to i3
getelementptr inbounds [4 x i64]* @switch.table, i32 0, i3 %switch.tableidx.zext
rdar://17735071
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213815 91177308-0d34-0410-b5e6-96231b3b80d8
While the subprogram map cache used by Dead Argument Elimination works
there, I made a mistake when reusing it for Argument Promotion in
r212128 because ArgPromo may transform functions more than once whereas
DAE transforms each function only once, removing all the dead arguments
in one go.
To address this, ensure that the map is updated after each argument
promotion.
In retrospect it might be a little wasteful to create a map of all
subprograms when only handling a single CGSCC, but the alternative is
walking the debug info for each function in the CGSCC that gets updated.
It's not clear to me what the right tradeoff is there, but since the
current tradeoff seems to be working OK (and the code to keep things
updated is very cheap), let's stick with that for now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213805 91177308-0d34-0410-b5e6-96231b3b80d8
It handles the errors which were seen in PR19958 where wrong code was being emitted due to earlier patch.
Added code for lshr as well as non-exact right shifts.
It implements :
(icmp eq/ne (ashr/lshr const2, A), const1)" ->
(icmp eq/ne A, Log2(const2/const1)) ->
(icmp eq/ne A, Log2(const2) - Log2(const1))
Differential Revision: http://reviews.llvm.org/D4068
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213678 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r213474 (and r213475), which causes a miscompile on
a stage2 LTO build. I'll reply on the list in a moment.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213562 91177308-0d34-0410-b5e6-96231b3b80d8
Prevents hoisting of loads above stores and sinking of stores below loads
in MergedLoadStoreMotion.cpp (rdar://15991737)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213497 91177308-0d34-0410-b5e6-96231b3b80d8
Prior to this change, the loop vectorizer did not make use of the alias
analysis infrastructure. Instead, it performed memory dependence analysis using
ScalarEvolution-based linear dependence checks within equivalence classes
derived from the results of ValueTracking's GetUnderlyingObjects.
Unfortunately, this meant that:
1. The loop vectorizer had logic that essentially duplicated that in BasicAA
for aliasing based on identified objects.
2. The loop vectorizer could not partition the space of dependency checks
based on information only easily available from within AA (TBAA metadata is
currently the prime example).
This means, for example, regardless of whether -fno-strict-aliasing was
provided, the vectorizer would only vectorize this loop with a runtime
memory-overlap check:
void foo(int *a, float *b) {
for (int i = 0; i < 1600; ++i)
a[i] = b[i];
}
This is suboptimal because the TBAA metadata already provides the information
necessary to show that this check unnecessary. Of course, the vectorizer has a
limit on the number of such checks it will insert, so in practice, ignoring
TBAA means not vectorizing more-complicated loops that we should.
This change causes the vectorizer to use an AliasSetTracker to keep track of
the pointers in the loop. The resulting alias sets are then used to partition
the space of dependency checks, and potential runtime checks; this results in
more-efficient vectorizations.
When pointer locations are added to the AliasSetTracker, two things are done:
1. The location size is set to UnknownSize (otherwise you'd not catch
inter-iteration dependencies)
2. For instructions in blocks that would need to be predicated, TBAA is
removed (because the metadata might have a control dependency on the condition
being speculated).
For non-predicated blocks, you can leave the TBAA metadata. This is safe
because you can't have an iteration dependency on the TBAA metadata (if you
did, and you unrolled sufficiently, you'd end up with the same pointer value
used by two accesses that TBAA says should not alias, and that would yield
undefined behavior).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213486 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: This patch introduces two new iterator ranges and updates existing code to use it. No functional change intended.
Test Plan: All tests (make check-all) still pass.
Reviewers: dblaikie
Reviewed By: dblaikie
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D4481
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213474 91177308-0d34-0410-b5e6-96231b3b80d8
IRBuilder has CreateAligned(Load|Store) functions; use them and we don't need
to make a second call to setAlignment.
No functionality change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213453 91177308-0d34-0410-b5e6-96231b3b80d8
There are some kinds of metadata that are safe to propagate from the scalar
instructions to the vector instructions (fpmath and tbaa currently).
Regarding TBAA, one might worry about propagating it on if-converted loads and
stores, because the metadata might have had a control dependency on the
condition, and thus actually aliased with some other non-speculated memory
access when the condition was false. However, this would be caught by the
runtime overlap checks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213452 91177308-0d34-0410-b5e6-96231b3b80d8