for arbitrary terminators in predecessors, don't assume
it is a conditional or uncond branch. The testcase shows
an example where they can happen with switches.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@94323 91177308-0d34-0410-b5e6-96231b3b80d8
externally visible function, it can still find all callers of it and replace
the parameters to a dead argument with undef.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@94322 91177308-0d34-0410-b5e6-96231b3b80d8
handle the case when we can infer an input to the xor
from all inputs that agree, instead of going into an
infinite loop. Another part of PR6199
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@94321 91177308-0d34-0410-b5e6-96231b3b80d8
missing ones are libsupport, libsystem and libvmcore. libvmcore is
currently blocked on bugpoint, which uses EH. Once it stops using
EH, we can switch it off.
This #if 0's out 3 unit tests, because gtest requires RTTI information.
Suggestions welcome on how to fix this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@94164 91177308-0d34-0410-b5e6-96231b3b80d8
loop-variant components, adds must be inserted after the increment.
Keep track of the increment position for this case, and insert
these adds in the correct location.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@94110 91177308-0d34-0410-b5e6-96231b3b80d8
operands exceeds the number of registers used in the initial
solution, as that wouldn't lead to a profitable solution anyway.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@94107 91177308-0d34-0410-b5e6-96231b3b80d8
ValueMapper.cpp ends up calling an out of line
__ZNK4llvm12PATypeHolder3getEv, which is a template and llvm-config
determines arbitrarily to use the one in libipo. This sucks, but
keeping the #include is a reasonable workaround.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@94103 91177308-0d34-0410-b5e6-96231b3b80d8
This new version is much more aggressive about doing "full" reduction in
cases where it reduces register pressure, and also more aggressive about
rewriting induction variables to count down (or up) to zero when doing so
reduces register pressure.
It currently uses fairly simplistic algorithms for finding reuse
opportunities, but it introduces a new framework allows it to combine
multiple strategies at once to form hybrid solutions, instead of doing
all full-reduction or all base+index.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@94061 91177308-0d34-0410-b5e6-96231b3b80d8
No functional change except the forgotten test for
InlineLimit.getNumOccurrences() == 0 in the CurrentThreshold2 calculation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@94007 91177308-0d34-0410-b5e6-96231b3b80d8
than the scaled register. This makes it more likely that subsequent
AddrModeMatcher queries will match the new address the same way as the
old, instead of accidentally matching what had been the base register
as the new scaled register, and then failing to match the scaled register.
This fixes some problems with address-mode sinking multiple muls into a
block, which will be a lot more common with some upcoming
LoopStrengthReduction changes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@93935 91177308-0d34-0410-b5e6-96231b3b80d8
are the same. I had already fixed a similar problem where the source and
destination were different bitcasts derived from the same alloca, but the
previous fix still did not handle the case where both operands are exactly
the same value. Radar 7552893.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@93848 91177308-0d34-0410-b5e6-96231b3b80d8
aggressive changed the canonical form from sext(trunc(x)) to ashr(lshr(x)),
make sure to transform a couple more things into that canonical form,
and catch a case where we missed turning zext/shl/ashr into a single sext.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@93787 91177308-0d34-0410-b5e6-96231b3b80d8
added to the FSub version. However, the original version of this xform guarded
against doing this for floating point (!Op0->getType()->isFPOrFPVector()).
This is causing LLVM to perform incorrect xforms for code like:
void func(double *rhi, double *rlo, double xh, double xl, double yh, double yl){
double mh, ml;
double c = 134217729.0;
double up, u1, u2, vp, v1, v2;
up = xh*c;
u1 = (xh - up) + up;
u2 = xh - u1;
vp = yh*c;
v1 = (yh - vp) + vp;
v2 = yh - v1;
mh = xh*yh;
ml = (((u1*v1 - mh) + (u1*v2)) + (u2*v1)) + (u2*v2);
ml += xh*yl + xl*yh;
*rhi = mh + ml;
*rlo = (mh - (*rhi)) + ml;
}
The last line was optimized away, but rl is intended to be the difference
between the infinitely precise result of mh + ml and after it has been rounded
to double precision.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@93369 91177308-0d34-0410-b5e6-96231b3b80d8
in JT.
2) When cloning blocks for PHI or xor conditions, use
instsimplify to simplify the code as we go. This allows us to
squish common cases early in JT which opens up opportunities for
subsequent iterations, and allows it to completely simplify the
testcase.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@93253 91177308-0d34-0410-b5e6-96231b3b80d8
condition is a xor with a phi node. This eliminates nonsense
like this from 176.gcc in several places:
LBB166_84:
testl %eax, %eax
- setne %al
- xorb %cl, %al
- notb %al
- testb $1, %al
- je LBB166_85
+ je LBB166_69
+ jmp LBB166_85
This is rdar://7391699
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@93221 91177308-0d34-0410-b5e6-96231b3b80d8
codegen has no apparent problem with the trunc version of this, because it turns
into a simple subreg idiom
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@93202 91177308-0d34-0410-b5e6-96231b3b80d8
trunc has multiple uses. Codegen is not able to coalesce the subreg case
correctly and so this leads to higher register pressure and spilling (see PR5997).
This speeds up 256.bzip2 from 8.60 -> 8.04s on my machine, ~7%.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@93200 91177308-0d34-0410-b5e6-96231b3b80d8