the 'zero' bit down into the back-end. There are other cases where this logic
isn't sufficient, so they should be handled separately.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@113665 91177308-0d34-0410-b5e6-96231b3b80d8
iterator when an optimization took place. This allows us to do more insane
things with the code than just remove an instruction or two.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@113640 91177308-0d34-0410-b5e6-96231b3b80d8
take multiple cycles to decode.
For the current if-converter clients (actually only ARM), the instructions that
are predicated on false are not nops. They would still take machine cycles to
decode. Micro-coded instructions such as LDM / STM can potentially take multiple
cycles to decode. If-converter should take treat them as non-micro-coded
simple instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@113570 91177308-0d34-0410-b5e6-96231b3b80d8
instruction in the class would be decoded to. Or zero if the number of
uOPs must be determined dynamically.
This will be used to determine the cost-effectiveness of predicating a
micro-coded instruction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@113513 91177308-0d34-0410-b5e6-96231b3b80d8
that like to randomly define things like "X86", regenerate autoconf bits
and update cmake.
Fixes PR7852.
Patch by Xerxes Rånby!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@112499 91177308-0d34-0410-b5e6-96231b3b80d8
expanding: e.g. <2 x float> -> <4 x float> instead of -> 2 floats. This
affects two places in the code: handling cross block values and handling
function return and arguments. Since vectors are already widened by
legalizetypes, this gives us much better code and unblocks x86-64 abi
and SPU abi work.
For example, this (which is a silly example of a cross-block value):
define <4 x float> @test2(<4 x float> %A) nounwind {
%B = shufflevector <4 x float> %A, <4 x float> undef, <2 x i32> <i32 0, i32 1>
%C = fadd <2 x float> %B, %B
br label %BB
BB:
%D = fadd <2 x float> %C, %C
%E = shufflevector <2 x float> %D, <2 x float> undef, <4 x i32> <i32 0, i32 1, i32 undef, i32 undef>
ret <4 x float> %E
}
Now compiles into:
_test2: ## @test2
## BB#0:
addps %xmm0, %xmm0
addps %xmm0, %xmm0
ret
previously it compiled into:
_test2: ## @test2
## BB#0:
addps %xmm0, %xmm0
pshufd $1, %xmm0, %xmm1
## kill: XMM0<def> XMM0<kill> XMM0<def>
insertps $0, %xmm0, %xmm0
insertps $16, %xmm1, %xmm0
addps %xmm0, %xmm0
ret
This implements rdar://8230384
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@112101 91177308-0d34-0410-b5e6-96231b3b80d8
For now it's still a command line option, but the interface to the generic
code doesn't need to know that.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@111942 91177308-0d34-0410-b5e6-96231b3b80d8
Nothing fancy, just ask the target if any currently available base reg
is in range for the instruction under consideration and use the first one
that is. Placeholder ARM implementation simply returns false for now.
ongoing saga of rdar://8277890
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@111374 91177308-0d34-0410-b5e6-96231b3b80d8
the local block. Resolve references to those indices to a new base register.
For simplification and testing purposes, a new virtual base register is
allocated for each frame index being resolved. The result is truly horrible,
but correct, code that's good for exercising the new code paths.
Next up is adding thumb1 support, which should be very simple. Following that
will be adding base register re-use and implementing a reasonable ARM
heuristic for when a virtual base register should be generated at all.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@111315 91177308-0d34-0410-b5e6-96231b3b80d8
whether to allocate a virtual frame base register to resolve the frame
index reference in it. Implement a simple version for ARM to aid debugging.
In LocalStackSlotAllocation, scan the function for frame index references
to local frame indices and ask the target whether to allocate virtual
frame base registers for any it encounters. Purely infrastructural for
debug output. Next step is to actually allocate base registers, then add
intelligent re-use of them.
rdar://8277890
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@111262 91177308-0d34-0410-b5e6-96231b3b80d8
that many of these things, so the memory savings isn't significant,
and there are now situations where there can be alignments greater
than 128.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@110836 91177308-0d34-0410-b5e6-96231b3b80d8
When splitting a live range, the new registers have fewer uses and the
permissible register class may be less constrained. Recompute the register class
constraint from the uses of new registers created for a split. This may let them
be allocated from a larger set, possibly avoiding a spill.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@110703 91177308-0d34-0410-b5e6-96231b3b80d8
relatively expensive comparison analyzer on each instruction. Also rename the
comparison analyzer method to something more in line with what it actually does.
This pass is will eventually be folded into the Machine CSE pass.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@110539 91177308-0d34-0410-b5e6-96231b3b80d8
Without this what was happening was:
* R3 is not marked as "used"
* ARM backend thinks it has to save it to the stack because of vaarg
* Offset computation correctly ignores it
* Offsets are wrong
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@110446 91177308-0d34-0410-b5e6-96231b3b80d8
need the Compare flag after all.
--- Reverse-merging r109901 into '.':
U include/llvm/Target/TargetInstrDesc.h
U include/llvm/Target/Target.td
U utils/TableGen/InstrInfoEmitter.cpp
U utils/TableGen/CodeGenInstruction.cpp
U utils/TableGen/CodeGenInstruction.h
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@110424 91177308-0d34-0410-b5e6-96231b3b80d8
This pass tries to remove comparison instructions when possible. For instance,
if you have this code:
sub r1, 1
cmp r1, 0
bz L1
and "sub" either sets the same flag as the "cmp" instruction or could be
converted to set the same flag, then we can eliminate the "cmp" instruction all
together. This is a important for ARM where the ALU instructions could set the
CPSR flag, but need a special suffix ('s') to do so.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@110423 91177308-0d34-0410-b5e6-96231b3b80d8
later to identify and possibly remove superfluous compare instructions -- those
that are testing for and setting a status flag that should already be set.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@109901 91177308-0d34-0410-b5e6-96231b3b80d8
appropriate for targets without detailed instruction iterineries.
The scheduler schedules for increased instruction level parallelism in
low register pressure situation; it schedules to reduce register pressure
when the register pressure becomes high.
On x86_64, this is a win for all tests in CFP2000. It also sped up 256.bzip2
by 16%.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@109300 91177308-0d34-0410-b5e6-96231b3b80d8