the things, and renames it to CBindingWrapping.h. I also moved
CBindingWrapping.h into Support/.
This new file just contains the macros for defining different wrap/unwrap
methods.
The calls to those macros, as well as any custom wrap/unwrap definitions
(like for array of Values for example), are put into corresponding C++
headers.
Doing this required some #include surgery, since some .cpp files relied
on the fact that including Wrap.h implicitly caused the inclusion of a
bunch of other things.
This also now means that the C++ headers will include their corresponding
C API headers; for example Value.h must include llvm-c/Core.h. I think
this is harmless, since the C API headers contain just external function
declarations and some C types, so I don't believe there should be any
nasty dependency issues here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180881 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r180802
There's ongoing discussion about whether this is the right place to make
this transformation. Reverting for now while we figure it out.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180834 91177308-0d34-0410-b5e6-96231b3b80d8
Always fold a shuffle-of-shuffle into a single shuffle when there's only one
input vector in the first place. Continue to be more conservative when there's
multiple inputs.
rdar://13402653
PR15866
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180802 91177308-0d34-0410-b5e6-96231b3b80d8
Differences in bitwidth between X and Y could exist even if C1 and C2 have
the same Log2 representation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180779 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes the optimization introduced in r179748 and reverted in r179750.
While the optimization was sound, it did not properly respect differences in
bit-width.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180777 91177308-0d34-0410-b5e6-96231b3b80d8
One performs: (X == 13 | X == 14) -> X-13 <u 2
The other: (A == C1 || A == C2) -> (A & ~(C1 ^ C2)) == C1
The problem is that there are certain values of C1 and C2 that
trigger both transforms but the first one blocks out the second,
this generates suboptimal code.
Reordering the transforms should be better in every case and
allows us to do interesting stuff like turn:
%shr = lshr i32 %X, 4
%and = and i32 %shr, 15
%add = add i32 %and, -14
%tobool = icmp ne i32 %add, 0
into:
%and = and i32 %X, 240
%tobool = icmp ne i32 %and, 224
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179493 91177308-0d34-0410-b5e6-96231b3b80d8
When trying to collapse sequences of insertelement/extractelement
instructions into single shuffle instructions, there is one specific
case where the Instruction Combiner wrongly updates the resulting
Mask of shuffle indexes.
The problem is in function CollectShuffleElments.
If we have a sequence of insert/extract element instructions
like the one below:
%tmp1 = extractelement <4 x float> %LHS, i32 0
%tmp2 = insertelement <4 x float> %RHS, float %tmp1, i32 1
%tmp3 = extractelement <4 x float> %RHS, i32 2
%tmp4 = insertelement <4 x float> %tmp2, float %tmp3, i32 3
Where:
. %RHS will have a mask of [4,5,6,7]
. %LHS will have a mask of [0,1,2,3]
The Mask of shuffle indexes is wrongly computed to [4,1,6,7]
instead of [4,0,6,7].
When analyzing %tmp2 in order to compute the Mask for the
resulting shuffle instruction, the algorithm forgets to update
the mask index at position 1 with the index associated to the
element extracted from %LHS by instruction %tmp1.
Patch by Andrea DiBiagio!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179291 91177308-0d34-0410-b5e6-96231b3b80d8
The OptimizeIntToFloatBitCast converts shift-truncate sequences
into extractelement operations. The computation of the element
index to be used in the resulting operation is currently only
correct for little-endian targets.
This commit fixes the element index computation to be correct
for big-endian targets as well. If the target byte order is
unknown, the optimization cannot be performed at all.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178031 91177308-0d34-0410-b5e6-96231b3b80d8
The problem is that the code mistakenly took for granted that following constructor
is able to create an APFloat from a *SIGNED* integer:
APFloat::APFloat(const fltSemantics &ourSemantics, integerPart value)
rdar://13486998
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177906 91177308-0d34-0410-b5e6-96231b3b80d8
This simplification happens at 2 places :
- using the nsw attribute when the shl / mul is used by a sign test
- when the shl / mul is compared for (in)equality to zero
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177856 91177308-0d34-0410-b5e6-96231b3b80d8
The original code used i32, and i64 if legal. This introduced unneeded
casts when they aren't legal, or when the index variable i has another
type. In order of preference: try to use i's type; use the smallest
fitting legal type (using an added DataLayout method); default to i32.
A testcase checks that this works when the index gep operand is i16.
Patch by : Ahmed Bougacha <ahmed.bougacha@gmail.com>
Reviewed by : Duncan
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177712 91177308-0d34-0410-b5e6-96231b3b80d8
Rules include:
1)1 x*y +/- x*z => x*(y +/- z)
(the order of operands dosen't matter)
2) y/x +/- z/x => (y +/- z)/x
The transformation is disabled if the new add/sub expr "y +/- z" is a
denormal/naz/inifinity.
rdar://12911472
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177088 91177308-0d34-0410-b5e6-96231b3b80d8
When considering folding a bitcast of an alloca into the alloca itself,
make sure we don't shrink the amount of memory being allocated, or
things rapidly go sideways.
rdar://13324424
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176547 91177308-0d34-0410-b5e6-96231b3b80d8
The instcombine recognized pattern looks like:
a = b * c
d = a +/- Cst
or
a = b * c
d = Cst +/- a
When creating the new operands for fadd or fsub instruction following the related fmul, the first operand was created with the second original operand (M0 was created with C1) and the second with the first (M1 with Opnd0).
The fix consists in creating the new operands with the appropriate original operand, i.e., M0 with Opnd0 and M1 with C1.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176300 91177308-0d34-0410-b5e6-96231b3b80d8
(or (bool?A:B),(bool?C:D)) --> (bool?(or A,C):(or B,D))
By the time the OR is visited, both the SELECTs have been visited and not
optimized and the OR itself hasn't been transformed so we do this transform in
the hopes that the new ORs will be optimized.
The transform is explicitly disabled for vector-selects until "codegen matures
to handle them better".
Patch by Muhammad Tauqir!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175380 91177308-0d34-0410-b5e6-96231b3b80d8
It enables to work with a smaller constant, which is target friendly for those which can compare to immediates.
It also avoids inserting a shift in favor of a trunc, which can be free on some targets.
This used to work until LLVM-3.1, but regressed with the 3.2 release.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175270 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit 3854a5d90fee52af1065edbed34521fff6cdc18d.
This causes a clang unit test to hang: vtable-available-externally.cpp.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174692 91177308-0d34-0410-b5e6-96231b3b80d8
There are still places which treat the Attribute object as a collection of
attributes. I'm systematically removing them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173990 91177308-0d34-0410-b5e6-96231b3b80d8
In the future, AttributeWithIndex won't be used anymore. Besides, it exposes the
internals of the AttributeSet to outside users, which isn't goodness.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173602 91177308-0d34-0410-b5e6-96231b3b80d8
The 'getSlot' function and its ilk allow introspection into the AttributeSet
class. However, that class should be opaque. Allow access through accessor
methods instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173522 91177308-0d34-0410-b5e6-96231b3b80d8
This does the right thing unless the multiplication overflows, but the old code
didn't handle that case either.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173276 91177308-0d34-0410-b5e6-96231b3b80d8