The convention used to specify the PowerPC ISA is that bits are numbered in
reverse order (0 is the index of the high bit). To support this "little endian"
encoding convention, CodeEmitterGen will reverse the bit numberings prior to
generating the encoding tables. In order to generate a disassembler,
FixedLenDecoderEmitter needs to do the same.
This moves the bit reversal logic out of CodeEmitterGen and into CodeGenTarget
(where it can be used by both CodeEmitterGen and FixedLenDecoderEmitter). This
is prep work for disassembly support in the PPC backend (which is the only
in-tree user of this little-endian encoding support).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197532 91177308-0d34-0410-b5e6-96231b3b80d8
I've tried to find main moudle headers where possible, but the TableGen
stuff may warrant someone else looking at it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169251 91177308-0d34-0410-b5e6-96231b3b80d8
Some of these dyn_cast<>'s would be better phrased as isa<> or cast<>.
That will happen in a future patch.
There are also two dyn_cast_or_null<>'s slipped in instead of
dyn_cast<>'s, since they were causing crashes with just dyn_cast<>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165646 91177308-0d34-0410-b5e6-96231b3b80d8
- This patch is inspired by the failure of the following code snippet
which is used to convert enumerable values into encoding bits to
improve the readability of td files.
class S<int s> {
bits<2> V = !if(!eq(s, 8), {0, 0},
!if(!eq(s, 16), {0, 1},
!if(!eq(s, 32), {1, 0},
!if(!eq(s, 64), {1, 1}, {?, ?}))));
}
Later, PR8330 is found to report not exactly the same bug relevant
issue to bit/bits values.
- Instead of resolving bit/bits values separately through
resolveBitReference(), this patch adds getBit() for all Inits and
resolves bit value by resolving plus getting the specified bit. This
unifies the resolving of bit with other values and removes redundant
logic for resolving bit only. In addition,
BitsInit::resolveReferences() is optimized to take advantage of this
origanization by resolving VarBitInit's variable reference first and
then getting bits from it.
- The type interference in '!if' operator is revised to support possible
combinations of int and bits/bit in MHS and RHS.
- As there may be illegal assignments from integer value to bit, says
assign 2 to a bit, but we only check this during instantiation in some
cases, e.g.
bit V = !if(!eq(x, 17), 0, 2);
Verbose diagnostic message is generated when invalid value is
resolveed to help locating the error.
- PR8330 is fixed as well.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163360 91177308-0d34-0410-b5e6-96231b3b80d8
The TableGenBackend base class doesn't do much, and will be removed
completely soon.
Patch by Sean Silva!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158311 91177308-0d34-0410-b5e6-96231b3b80d8
~0U might be i32 on 32-bit hosts, then (uint64_t)~0U might not be expected as (i64)0xFFFFFFFF_FFFFFFFF, but as (i64)0x00000000_FFFFFFFF.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152407 91177308-0d34-0410-b5e6-96231b3b80d8
Replace uses of new *Init with *Init::get. This hides the allocation
implementation so that we can unique Inits in various ways.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136486 91177308-0d34-0410-b5e6-96231b3b80d8
Get rid of all Init members that modify internal state. This is in
preparation for making references to Inits const.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136483 91177308-0d34-0410-b5e6-96231b3b80d8
Manage Inits in a FoldingSet. This provides several benefits:
- Memory for Inits is properly managed
- Duplicate Inits are folded into Flyweights, saving memory
- It enforces const-correctness, protecting against certain classes
of bugs
The above benefits allow Inits to be used in more contexts, which in
turn provides more dynamism to TableGen. This enhanced capability
will be used by the AVX code generator to a fold common patterns
together.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134907 91177308-0d34-0410-b5e6-96231b3b80d8
For now this is distinct from isCodeGenOnly, as code-gen-only
instructions can (and often do) still have encoding information
associated with them. Once we've migrated all of them over to true
pseudo-instructions that are lowered to real instructions prior to
the printer/emitter, we can remove isCodeGenOnly and just use isPseudo.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134539 91177308-0d34-0410-b5e6-96231b3b80d8
Unfortunately, my only testcase for this is fragile, and the ARM AsmParser can't round trip the instruction in question.
<rdar://problem/9345702>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@130410 91177308-0d34-0410-b5e6-96231b3b80d8
operand values. This is useful for operands which require additional trickery
to encode into the instruction. For example, the ARM shifted immediate and
shifted register operands.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@116353 91177308-0d34-0410-b5e6-96231b3b80d8
try to match them by name first. If there is no by-name match, fall back to
assuming they are in order (this was the previous behavior).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@116211 91177308-0d34-0410-b5e6-96231b3b80d8
list of predefined instructions appear. Add some consistency checks.
Ideally, TargetOpcodes.h should be produced by TableGen from Target.td, but it
is hardly worth the effort.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@107520 91177308-0d34-0410-b5e6-96231b3b80d8
sub-register indices and outputs a single super register which is formed from
a consecutive sequence of registers.
This is used as register allocation / coalescing aid and it is useful to
represent instructions that output register pairs / quads. For example,
v1024, v1025 = vload <address>
where v1024 and v1025 forms a register pair.
This really should be modelled as
v1024<3>, v1025<4> = vload <address>
but it would violate SSA property before register allocation is done.
Currently we use insert_subreg to form the super register:
v1026 = implicit_def
v1027 - insert_subreg v1026, v1024, 3
v1028 = insert_subreg v1027, v1025, 4
...
= use v1024
= use v1028
But this adds pseudo live interval overlap between v1024 and v1025.
We can now modeled it as
v1024, v1025 = vload <address>
v1026 = REG_SEQUENCE v1024, 3, v1025, 4
...
= use v1024
= use v1026
After coalescing, it will be
v1026<3>, v1025<4> = vload <address>
...
= use v1026<3>
= use v1026
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@102815 91177308-0d34-0410-b5e6-96231b3b80d8
into TargetOpcodes.h. #include the new TargetOpcodes.h
into MachineInstr. Add new inline accessors (like isPHI())
to MachineInstr, and start using them throughout the
codebase.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@95687 91177308-0d34-0410-b5e6-96231b3b80d8