This reverts commit r213474 (and r213475), which causes a miscompile on
a stage2 LTO build. I'll reply on the list in a moment.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213562 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: This patch introduces two new iterator ranges and updates existing code to use it. No functional change intended.
Test Plan: All tests (make check-all) still pass.
Reviewers: dblaikie
Reviewed By: dblaikie
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D4481
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213474 91177308-0d34-0410-b5e6-96231b3b80d8
string_ostream is a safe and efficient string builder that combines opaque
stack storage with a built-in ostream interface.
small_string_ostream<bytes> additionally permits an explicit stack storage size
other than the default 128 bytes to be provided. Beyond that, storage is
transferred to the heap.
This convenient class can be used in most places an
std::string+raw_string_ostream pair or SmallString<>+raw_svector_ostream pair
would previously have been used, in order to guarantee consistent access
without byte truncation.
The patch also converts much of LLVM to use the new facility. These changes
include several probable bug fixes for truncated output, a programming error
that's no longer possible with the new interface.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211749 91177308-0d34-0410-b5e6-96231b3b80d8
We must validate the value type in TLI::getRegisterByName, because if we
don't and the wrong type was used with the IR intrinsic, then we'll assert
(because we won't be able to find a valid register class with which to
construct the requested copy operation). For PPC64, additionally, the type
information is necessary to decide between the 64-bit register and the 32-bit
subregister.
No functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208508 91177308-0d34-0410-b5e6-96231b3b80d8
This patch implements the infrastructure to use named register constructs in
programs that need access to specific registers (bare metal, kernels, etc).
So far, only the stack pointer is supported as a technology preview, but as it
is, the intrinsic can already support all non-allocatable registers from any
architecture.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208104 91177308-0d34-0410-b5e6-96231b3b80d8
define below all header includes in the lib/CodeGen/... tree. While the
current modules implementation doesn't check for this kind of ODR
violation yet, it is likely to grow support for it in the future. It
also removes one layer of macro pollution across all the included
headers.
Other sub-trees will follow.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206837 91177308-0d34-0410-b5e6-96231b3b80d8
for use with C++11 range-based for-loops.
The gist of phase 1 is to remove the skipInstruction() and skipBundle()
methods from these iterators, instead splitting each iterator into a version
that walks operands, a version that walks instructions, and a version that
walks bundles. This has the result of making some "clever" loops in lib/CodeGen
more verbose, but also makes their iterator invalidation characteristics much
more obvious to the casual reader. (Making them concise again in the future is a
good motivating case for a pre-incrementing range adapter!)
Phase 2 of this undertaking with consist of removing the getOperand() method,
and changing operator*() of the operand-walker to return a MachineOperand&. At
that point, it should be possible to add range views for them that work as one
might expect.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203757 91177308-0d34-0410-b5e6-96231b3b80d8
selection dag (PR19012)
In X86SelectionDagInfo::EmitTargetCodeForMemcpy we check with MachineFrameInfo
to make sure that ESI isn't used as a base pointer register before we choose to
emit rep movs (which clobbers esi).
The problem is that MachineFrameInfo wouldn't know about dynamic allocas or
inline asm that clobbers the stack pointer until SelectionDAGBuilder has
encountered them.
This patch fixes the problem by checking for such things when building the
FunctionLoweringInfo.
Differential Revision: http://llvm-reviews.chandlerc.com/D2954
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202930 91177308-0d34-0410-b5e6-96231b3b80d8
Before this patch we used getIntImmCost from TargetTransformInfo to determine if
a load of a constant should be converted to just a constant, but the threshold
for this was set to an arbitrary value. This value works well for the two
targets (X86 and ARM) that implement this target-hook, but it isn't
target-independent at all.
Now targets have the possibility to decide directly if this optimization should
be performed. The default value is set to false to preserve the current
behavior. The target hook has been moved to TargetLowering, which removed the
last use and need of TargetTransformInfo in SelectionDAG.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200271 91177308-0d34-0410-b5e6-96231b3b80d8
This is a very confusing option for a feature that will go away.
-enable-misched is exposed instead to help triage issues with the new
scheduler.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199133 91177308-0d34-0410-b5e6-96231b3b80d8
This re-lands commit r196876, which was reverted in r196879.
The tests have been fixed to pass on platforms with a stack alignment
larger than 4.
Update to clang side tests will land shortly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196939 91177308-0d34-0410-b5e6-96231b3b80d8
For stack frames requiring realignment, three pointers may be needed:
- ebp to address incoming arguments
- esi (could be any callee-saved register) to address locals
- esp to address outgoing arguments
We would use esi unconditionally without verifying that it did not
conflict with inline assembly.
This change doesn't do the verification, it simply emits a fatal error
on functions that use stack realignment, dynamic SP adjustments, and
inline assembly.
Because stack realignment is common on Windows, we also no longer assume
that MS inline assembly clobbers esp. Instead, we analyze the inline
instructions for implicit definitions and check if esp is there. If so,
we require the use of a base pointer and consider it in the condition
above.
Mostly fixes PR16830, but we could try harder to find a non-conflicting
base pointer.
Reviewers: sunfish
Differential Revision: http://llvm-reviews.chandlerc.com/D1317
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196876 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Moved the requirement for SelectionDAG::getConstant() to return legally
typed nodes slightly earlier. There were two optional DAGCombine passes
that were missed out and were required to produce type-legal DAGs.
Simplified a code-path in tryFoldToZero() to use SelectionDAG::getConstant().
This provides support for both promoted and expanded vector types whereas the
previous code only supported promoted vector types.
Fixes a "Type for zero vector elements is not legal" assertion detected by
an llvm-stress generated test.
Reviewers: resistor
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2251
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195635 91177308-0d34-0410-b5e6-96231b3b80d8
Improvements over r195317:
- Set/restore EnableFastISel flag instead of just running FastISel within
SelectAllBasicBlocks; the flag is checked in various places, and
FastISel won't run properly if those places don't do the right thing.
- Test looks for normal ISel versus FastISel behavior, and not
something more subtle that doesn't work everywhere.
Based on work by Andrea Di Biagio.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195491 91177308-0d34-0410-b5e6-96231b3b80d8
It broke, at least, i686 target. It is reproducible with "llc -mtriple=i686-unknown".
FYI, it didn't appear to add either "-O0" or "-fast-isel".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195339 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
When getConstant() is called for an expanded vector type, it is split into
multiple scalar constants which are then combined using appropriate build_vector
and bitcast operations.
In addition to the usual big/little endian differences, the case where the
element-order of the vector does not have the same endianness as the elements
themselves is also accounted for. For example, for v4i32 on big-endian MIPS,
the byte-order of the vector is <3210,7654,BA98,FEDC>. For little-endian, it is
<0123,4567,89AB,CDEF>.
Handling this case turns out to be a nop since getConstant() returns a splatted
vector (so reversing the element order doesn't change the value)
This fixes a number of cases in MIPS MSA where calling getConstant() during
operation legalization introduces illegal types (e.g. to legalize v2i64 UNDEF
into a v2i64 BUILD_VECTOR of illegal i64 zeros). It should also handle bigger
differences between illegal and legal types such as legalizing v2i64 into v8i16.
lowerMSASplatImm() in the MIPS backend no longer needs to avoid calling
getConstant() so this function has been updated in the same patch.
For the sake of transparency, the steps I've taken since the review are:
* Added 'virtual' to isVectorEltOrderLittleEndian() as requested. This revealed
that the MIPS tests were falsely passing because a polymorphic function was
not actually polymorphic in the reviewed patch.
* Fixed the tests that were now failing. This involved deleting the code to
handle the MIPS MSA element-order (which was previously doing an byte-order
swap instead of an element-order swap). This left
isVectorEltOrderLittleEndian() unused and it was deleted.
* Fixed build failures caused by rebasing beyond r194467-r194472. These build
failures involved the bset, bneg, and bclr instructions added in these commits
using lowerMSASplatImm() in a way that was no longer valid after this patch.
Some of these were fixed by calling SelectionDAG::getConstant() instead,
others were fixed by a new function getBuildVectorSplat() that provided the
removed functionality of lowerMSASplatImm() in a more sensible way.
Reviewers: bkramer
Reviewed By: bkramer
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1973
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194811 91177308-0d34-0410-b5e6-96231b3b80d8
pointed to by a dbg_value belonging to a function argument is eliminated
during instruction selection.
rdar://problem/15094721.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@192011 91177308-0d34-0410-b5e6-96231b3b80d8
Sometimes a copy from a vreg -> vreg sneaks into the middle of a terminator
sequence. It is safe to slice this into the stack protector success bb.
This fixes PR16979.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191260 91177308-0d34-0410-b5e6-96231b3b80d8
Previously, the DAGISel function WalkChainUsers was spotting that it
had entered already-selected territory by whether a node was a
MachineNode (amongst other things). Since it's fairly common practice
to insert MachineNodes during ISelLowering, this was not the correct
check.
Looking around, it seems that other nodes get their NodeId set to -1
upon selection, so this makes sure the same thing happens to all
MachineNodes and uses that characteristic to determine whether we
should stop looking for a loop during selection.
This should fix PR15840.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191165 91177308-0d34-0410-b5e6-96231b3b80d8
A DBG_VALUE is register-indirect iff the first operand is a register
_and_ the second operand is an immediate.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190821 91177308-0d34-0410-b5e6-96231b3b80d8