Reapply r216913, a fix for PR20832 by Andrea Di Biagio. The commit was reverted
because of buildbot failures, and credit goes to Ulrich Weigand for isolating
the underlying issue (which can be confirmed by Valgrind, which does helpfully
light up like the fourth of July). Uli explained the problem with the original
patch as:
It seems the problem is calling multiplySignificand with an addend of category
fcZero; that is not expected by this routine. Note that for fcZero, the
significand parts are simply uninitialized, but the code in (or rather, called
from) multiplySignificand will unconditionally access them -- in effect using
uninitialized contents.
This version avoids using a category == fcZero addend within
multiplySignificand, which avoids this problem (the Valgrind output is also now
clean).
Original commit message:
[APFloat] Fixed a bug in method 'fusedMultiplyAdd'.
When folding a fused multiply-add builtin call, make sure that we propagate the
correct result in the case where the addend is zero, and the two other operands
are finite non-zero.
Example:
define double @test() {
%1 = call double @llvm.fma.f64(double 7.0, double 8.0, double 0.0)
ret double %1
}
Before this patch, the instruction simplifier wrongly folded the builtin call
in function @test to constant 'double 7.0'.
With this patch, method 'fusedMultiplyAdd' correctly evaluates the multiply and
propagates the expected result (i.e. 56.0).
Added test fold-builtin-fma.ll with the reproducible from PR20832 plus extra
test cases to verify the behavior of method 'fusedMultiplyAdd' in the presence
of NaN/Inf operands.
This fixes PR20832.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219708 91177308-0d34-0410-b5e6-96231b3b80d8
v2: Add SI lowering
Add test
v3: Place work dimensions after the kernel arguments.
v4: Calculate offset while lowering arguments
v5: rebase
v6: change prefix to AMDGPU
Reviewed-by: Tom Stellard <tom@stellard.net>
Signed-off-by: Jan Vesely <jan.vesely@rutgers.edu>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219705 91177308-0d34-0410-b5e6-96231b3b80d8
Use 0 as the base address for a constant address, so if
we have a constant address we can save moves and form
read2/write2s.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219698 91177308-0d34-0410-b5e6-96231b3b80d8
When LazyValueInfo uses @llvm.assume intrinsics to provide edge-value
constraints, we should check for intrinsics that dominate the edge's branch,
not just any potential context instructions. An assumption that dominates the
edge's branch represents a truth on that edge. This is specifically useful, for
example, if multiple predecessors assume a pointer to be nonnull, allowing us
to simplify a later null comparison.
The test case, and an initial patch, were provided by Philip Reames. Thanks!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219688 91177308-0d34-0410-b5e6-96231b3b80d8
e.g Currently we'll generate following instructions if the immediate is too wide:
MOV X0, WideImmediate
ADD X1, BaseReg, X0
LDR X2, [X1, 0]
Using [Base+XReg] addressing mode can save one ADD as following:
MOV X0, WideImmediate
LDR X2, [BaseReg, X0]
Differential Revision: http://reviews.llvm.org/D5477
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219665 91177308-0d34-0410-b5e6-96231b3b80d8
This is the same optimization of r219233 with modifications to support PHIs with multiple incoming edges from the same block
and a test to check that this condition is handled.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219656 91177308-0d34-0410-b5e6-96231b3b80d8
We assumed that negation operations of the form (0 - %Z) resulted in a
negative number. This isn't true if %Z was originally negative.
Substituting the negative number into the remainder operation may result
in undefined behavior because the dividend might be INT_MIN.
This fixes PR21256.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219639 91177308-0d34-0410-b5e6-96231b3b80d8
We have a transform that changes:
(x lshr C1) udiv C2
into:
x udiv (C2 << C1)
However, it is unsafe to do so if C2 << C1 discards any of C2's bits.
This fixes PR21255.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219634 91177308-0d34-0410-b5e6-96231b3b80d8
Some early revisions of the Cortex-A53 have an erratum (835769) whereby it is
possible for a 64-bit multiply-accumulate instruction in AArch64 state to
generate an incorrect result. The details are quite complex and hard to
determine statically, since branches in the code may exist in some
circumstances, but all cases end with a memory (load, store, or prefetch)
instruction followed immediately by the multiply-accumulate operation.
The safest work-around for this issue is to make the compiler avoid emitting
multiply-accumulate instructions immediately after memory instructions and the
simplest way to do this is to insert a NOP.
This patch implements such work-around in the backend, enabled via the option
-aarch64-fix-cortex-a53-835769.
The work-around code generation is not enabled by default.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219603 91177308-0d34-0410-b5e6-96231b3b80d8
This patch improves support for commutative instructions in the x86 memory folding implementation by attempting to fold a commuted version of the instruction if the original folding fails - if that folding fails as well the instruction is 're-commuted' back to its original order before returning.
This mainly helps the stack inliner better fold reloads of 3 (or more) operand instructions (VEX encoded SSE etc.) but by performing this in the lowest foldMemoryOperandImpl implementation it also replaces the X86InstrInfo::optimizeLoadInstr version and is now used by FastISel too.
Differential Revision: http://reviews.llvm.org/D5701
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219584 91177308-0d34-0410-b5e6-96231b3b80d8
Consider the case where X is 2. (2 <<s 31)/s-2147483648 is zero but we
would fold to X. Note that this is valid when we are in the unsigned
domain because we require NUW: 2 <<u 31 results in poison.
This fixes PR21245.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219568 91177308-0d34-0410-b5e6-96231b3b80d8
consider:
C1 = INT_MIN
C2 = -1
C1 * C2 overflows without a doubt but consider the following:
%x = i32 INT_MIN
This means that (%X /s C1) is 1 and (%X /s C1) /s C2 is -1.
N. B. Move the unsigned version of this transform to InstSimplify, it
doesn't create any new instructions.
This fixes PR21243.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219567 91177308-0d34-0410-b5e6-96231b3b80d8
consider:
mul i32 nsw %x, -2147483648
this instruction will not result in poison if %x is 1
however, if we transform this into:
shl i32 nsw %x, 31
then we will be generating poison because we just shifted into the sign
bit.
This fixes PR21242.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219566 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: Implement the most basic form of conditional branches in Mips fast-isel.
Test Plan:
br1.ll
run 4 flavors of test-suite. mips32 r1/r2 and at -O0/O2
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: llvm-commits, rfuhler
Differential Revision: http://reviews.llvm.org/D5583
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219556 91177308-0d34-0410-b5e6-96231b3b80d8
The LLVM Lang Ref states for signed/unsigned int to float conversions:
"If the value cannot fit in the floating point value, the results are undefined."
And for FP to signed/unsigned int:
"If the value cannot fit in ty2, the results are undefined."
This matches the C definitions.
The existing behavior pins to infinity or a max int value, but that may just
lead to more confusion as seen in:
http://llvm.org/bugs/show_bug.cgi?id=21130
Returning undef will hopefully lead to a less silent failure.
Differential Revision: http://reviews.llvm.org/D5603
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219542 91177308-0d34-0410-b5e6-96231b3b80d8
Currently this only functions to match simple cases
where ds_read2_* / ds_write2_* instructions can be used.
In the future it might match some of the other weird
load patterns, such as direct to LDS loads.
Currently enabled only with a subtarget feature to enable
easier testing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219533 91177308-0d34-0410-b5e6-96231b3b80d8
It also makes it more aggressive in querying range information by
adding a call to isKnownPredicateWithRanges to
isLoopBackedgeGuardedByCond and isLoopEntryGuardedByCond.
phabricator: http://reviews.llvm.org/D5638
Reviewed by: atrick, hfinkel
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219532 91177308-0d34-0410-b5e6-96231b3b80d8
I was quiet surprised to find this feature being used. Fortunately the uses
I found look fairly simple. In fact, they are just a very verbose version
of the regular ar commands.
Start implementing it then by parsing the script and setting the command
variables as if we had a regular command line.
This patch adds just enough support to create an empty archive and do a bit
of error checking. In followup patches I will implement at least addmod
and addlib.
From the description in the manual, even the more general case should not
be too hard to implement if needed. The features that don't map 1:1 to
the simple command line are
* Reading from multiple archives.
* Creating multiple archives.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219521 91177308-0d34-0410-b5e6-96231b3b80d8
ScalarEvolution in the presence of multiple exits. Previously all
loops exits had to have identical counts for a loop trip count to be
considered computable. This pessimization was implemented by calling
getBackedgeTakenCount(L) rather than getExitCount(L, ExitingBlock)
inside of ScalarEvolution::getSmallConstantTripCount() (see the FIXME
in the comments of that function). The pessimization was added to fix
a corner case involving undefined behavior (pr/16130). This patch more
precisely handles the undefined behavior case allowing the pessimization
to be removed.
ControlsExit replaces IsSubExpr to more precisely track the case where
undefined behavior is expected to occur. Because undefined behavior is
tracked more precisely we can remove MustExit from ExitLimit. MustExit
was used to track the case where the limit was computed potentially
assuming undefined behavior even if undefined behavior didn't necessarily
occur.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219517 91177308-0d34-0410-b5e6-96231b3b80d8
Fixes a logic error in the MachineScheduler found by Steve Montgomery (and
confirmed by Andy). This has gone unfixed for months because the fix has been
found to introduce some small performance regressions. However, Andy has
recommended that, at this point, we fix this to avoid further dependence on the
incorrect behavior (and then follow-up separately on any regressions), and I
agree.
Fixes PR18883.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219512 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: Add the ability to convert 64 or 32 bit floating point values to integer in mips fast-isel
Test Plan:
fpintconv.ll
ran 4 flavors of test-suite with no errors, misp32 r1/r2 O0/O2
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: llvm-commits, rfuhler, mcrosier
Differential Revision: http://reviews.llvm.org/D5562
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219511 91177308-0d34-0410-b5e6-96231b3b80d8
This change depends on the ApplePropertyString helper that I sent spearately.
Not sure how you want this tested: as a tool test by adding a binary to dump, or as an llvm test starting from an IR file?
Reviewers: dblaikie, samsonov
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5689
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219507 91177308-0d34-0410-b5e6-96231b3b80d8
DW_AT_specification and DW_AT_abstract_origin resolving was only performed
on subroutine DIEs because it used the getSubroutineName method. Introduce
a more generic getName() and use it to dump the reference attributes.
Testcases have been updated to check the printed names instead of the offsets
except when the name could be ambiguous.
Reviewers: dblaikie, samsonov
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5625
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219506 91177308-0d34-0410-b5e6-96231b3b80d8
instead
We used to transform this:
define void @test6(i1 %cond, i8* %ptr) {
entry:
br i1 %cond, label %bb1, label %bb2
bb1:
br label %bb2
bb2:
%ptr.2 = phi i8* [ %ptr, %entry ], [ null, %bb1 ]
store i8 2, i8* %ptr.2, align 8
ret void
}
into this:
define void @test6(i1 %cond, i8* %ptr) {
%ptr.2 = select i1 %cond, i8* null, i8* %ptr
store i8 2, i8* %ptr.2, align 8
ret void
}
because the simplifycfg transformation into selects would happen to happen
before the simplifycfg transformation that removes unreachable control flow
(We have 'unreachable control flow' due to the store to null which is undefined
behavior).
The existing transformation that removes unreachable control flow in simplifycfg
is:
/// If BB has an incoming value that will always trigger undefined behavior
/// (eg. null pointer dereference), remove the branch leading here.
static bool removeUndefIntroducingPredecessor(BasicBlock *BB)
Now we generate:
define void @test6(i1 %cond, i8* %ptr) {
store i8 2, i8* %ptr.2, align 8
ret void
}
I did not see any impact on the test-suite + externals.
rdar://18596215
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219462 91177308-0d34-0410-b5e6-96231b3b80d8
Long section names are represented as a slash followed by a numeric
ASCII string. This number is an offset into a string table.
Print the appropriate entry in the string table instead of the less
enlightening /4.
N.B. yaml2obj already does the right thing, this test exercises both
sides of the (de-)serialization.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219458 91177308-0d34-0410-b5e6-96231b3b80d8
This patch changes the fast-math implementation for calculating sqrt(x) from:
y = 1 / (1 / sqrt(x))
to:
y = x * (1 / sqrt(x))
This has 2 benefits: less code / faster code and one less estimate instruction
that may lose precision.
The only target that will be affected (until http://reviews.llvm.org/D5658 is approved)
is PPC. The difference in codegen for PPC is 2 less flops for a single-precision sqrtf
or vector sqrtf and 4 less flops for a double-precision sqrt.
We also eliminate a constant load and extra register usage.
Differential Revision: http://reviews.llvm.org/D5682
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219445 91177308-0d34-0410-b5e6-96231b3b80d8