This compiles with no changes to clang/lld/lldb with MSVC and includes
overloads to various functions which are used by those projects and llvm
which have OwningPtr's as parameters. This should allow out of tree
projects some time to move. There are also no changes to libs/Target,
which should help out of tree targets have time to move, if necessary.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203083 91177308-0d34-0410-b5e6-96231b3b80d8
implementation already lived.
After this commit, the only IR-library headers in include/llvm/* are
ones related to the legacy pass infrastructure that I'm planning to
leave there until the new one is farther along.
The only other headers at the top level are linking and initialization
aids that aren't really libraries but just headers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203069 91177308-0d34-0410-b5e6-96231b3b80d8
The iterator is a little complex because we don't want to expose the implementation
details (TrackingVH) of the operand vector to clients.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203053 91177308-0d34-0410-b5e6-96231b3b80d8
are operations that do not access memory but may be sensitive
to floating-point environment changes. LLVM does not attempt
to model FP environment changes, so this was unnecessarily conservative
and was getting on the way of some optimizations, in particular
SLP vectorization.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203037 91177308-0d34-0410-b5e6-96231b3b80d8
already lived there and it is where it belongs -- this is the in-memory
debug location representation.
This is just cleanup -- Modules can actually cope with this, but that
doesn't make it right. After chatting with folks that have out-of-tree
stuff, going ahead and moving the rest of the headers seems preferable.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202960 91177308-0d34-0410-b5e6-96231b3b80d8
itself and teach it to convert between the non-const and const variants.
De-templatetize its usage in APIs to just use the const variant which
always works for those use cases. Also, rename its implementation to
reflect that it is an iterator over *users* not over *uses*.
This is a step toward providing both iterator and range support for
walking the *uses* distinct from the *users*. In a subsequent patch this
will get renamed to make it clear that this is an adaptor over the
fundamental use iterator.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202923 91177308-0d34-0410-b5e6-96231b3b80d8
source file had already been moved. Also move the unittest into the IR
unittest library.
This may seem an odd thing to put in the IR library but we only really
use this with instructions and it needs the LLVM context to work, so it
is intrinsically tied to the IR library.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202842 91177308-0d34-0410-b5e6-96231b3b80d8
PassInfo structures of the legacy pass manager. Also give it the Legacy
prefix as it is not a particularly widely used header.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202839 91177308-0d34-0410-b5e6-96231b3b80d8
a bit surprising, as the class is almost entirely abstracted away from
any particular IR, however it encodes the comparsion predicates which
mutate ranges as ICmp predicate codes. This is reasonable as they're
used for both instructions and constants. Thus, it belongs in the IR
library with instructions and constants.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202838 91177308-0d34-0410-b5e6-96231b3b80d8
directly care about the Value class (it is templated so that the key can
be any arbitrary Value subclass), it is in fact concretely tied to the
Value class through the ValueHandle's CallbackVH interface which relies
on the key type being some Value subclass to establish the value handle
chain.
Ironically, the unittest is already in the right library.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202824 91177308-0d34-0410-b5e6-96231b3b80d8
Move the test for this class into the IR unittests as well.
This uncovers that ValueMap too is in the IR library. Ironically, the
unittest for ValueMap is useless in the Support library (honestly, so
was the ValueHandle test) and so it already lives in the IR unittests.
Mmmm, tasty layering.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202821 91177308-0d34-0410-b5e6-96231b3b80d8
name might indicate, it is an iterator over the types in an instruction
in the IR.... You see where this is going.
Another step of modularizing the support library.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202815 91177308-0d34-0410-b5e6-96231b3b80d8
business.
This header includes Function and BasicBlock and directly uses the
interfaces of both classes. It has to do with the IR, it even has that
in the name. =] Put it in the library it belongs to.
This is one step toward making LLVM's Support library survive a C++
modules bootstrap.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202814 91177308-0d34-0410-b5e6-96231b3b80d8
out-of-line so that it can refer to the methods on User. As
a consequence, this removes the need to define one template method if
value_use_iterator in the extremely strange User.h header (!!!).
This makse Use.h slightly less peculiar. The only remaining real
peculiarity is the definition of Use::set in Value.h
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202805 91177308-0d34-0410-b5e6-96231b3b80d8
inconsistent both with itself and with LLVM at large with formatting.
The *s were on the wrong side, the indent was off, etc etc. This is much
cleaner.
Also, go clang-format laying out the array of tags in nice columns.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202799 91177308-0d34-0410-b5e6-96231b3b80d8
a constructor either. Just call the constructor directly. I'll look into
making this work with aggregate initialization some other time (when
I have someone with MSVC 2012 handy to test ideas).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202688 91177308-0d34-0410-b5e6-96231b3b80d8
operand_values. The first provides a range view over operand Use
objects, and the second provides a range view over the Value*s being
used by those operands.
The naming is "STL-style" rather than "LLVM-style" because we have
historically named iterator methods STL-style, and range methods seem to
have far more in common with their iterator counterparts than with
"normal" APIs. Feel free to bikeshed on this one if you want, I'm happy
to change these around if people feel strongly.
I've switched code in SROA and LCG to exercise these mostly to ensure
they work correctly -- we don't really have an easy way to unittest this
and they're trivial.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202687 91177308-0d34-0410-b5e6-96231b3b80d8
A 'remark' is information that is not an error or a warning, but rather some
additional information provided to the user. In contrast to a 'note' a 'remark'
is an independent diagnostic, whereas a 'note' always depends on another
diagnostic.
A typical use case for remark nodes is information provided to the user, e.g.
information provided by the vectorizer about loops that have been vectorized.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202474 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes spurious warnings in llvm-link about the datalayout not matching.
Thanks to Zalman Stern for reporting the bug!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202276 91177308-0d34-0410-b5e6-96231b3b80d8
We don't have any test with more than 6 address spaces, so a DenseMap is
probably not the correct answer.
An unsorted array would also be OK, but we have to sort it for printing anyway.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202275 91177308-0d34-0410-b5e6-96231b3b80d8
The table argument is always 128-bit (and interpreted as <16 x i8>) so the
extra specifier for it is just clutter.
No user-visible behaviour change, so no tests.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202258 91177308-0d34-0410-b5e6-96231b3b80d8
Eventually DataLayoutPass should go away, but for now that is the only easy
way to get a DataLayout in some APIs. This patch only changes the ones that
have easy access to a Module.
One interesting issue with sometimes using DataLayoutPass and sometimes
fetching it from the Module is that we have to make sure they are equivalent.
We can get most of the way there by always constructing the pass with a Module.
In fact, the pass could be changed to point to an external DataLayout instead
of owning one to make this stricter.
Unfortunately, the C api passes a DataLayout, so it has to be up to the caller
to make sure the pass and the module are in sync.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202204 91177308-0d34-0410-b5e6-96231b3b80d8