handles the general cases.
The hope is to refactor this so that we don't end up building the entire
class for the trivial cases. I also want to lift a lot of the early
pre-processing in the initial segment of run() into a separate routine,
and really none of it needs to happen inside the primary promotion
class.
These routines in particular used none of the actual state in the
promotion class, so they don't really make sense as members.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186781 91177308-0d34-0410-b5e6-96231b3b80d8
This struct is nicely independent of everything else, and we already
needed a foward declaration here. It's simpler to just define it
immediately.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186780 91177308-0d34-0410-b5e6-96231b3b80d8
predecessors of the two blocks it is attempting to merge supply the
same incoming values to any phi in the successor block. This change
allows merging in the case where there is one or more incoming values
that are undef. The undef values are rewritten to match the non-undef
value that flows from the other edge. Patch by Mark Lacey.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186069 91177308-0d34-0410-b5e6-96231b3b80d8
A special case list can now specify categories for specific globals,
which can be used to instruct an instrumentation pass to treat certain
functions or global variables in a specific way, such as by omitting
certain aspects of instrumentation while keeping others, or informing
the instrumentation pass that a specific uninstrumentable function
has certain semantics, thus allowing the pass to instrument callers
according to those semantics.
For example, AddressSanitizer now uses the "init" category instead of
global-init prefixes for globals whose initializers should not be
instrumented, but which in all other respects should be instrumented.
The motivating use case is DataFlowSanitizer, which will have a
number of different categories for uninstrumentable functions, such
as "functional" which specifies that a function has pure functional
semantics, or "discard" which indicates that a function's return
value should not be labelled.
Differential Revision: http://llvm-reviews.chandlerc.com/D1092
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185978 91177308-0d34-0410-b5e6-96231b3b80d8
This allows us to create switches even if instcombine has munged two of the
incombing compares into one and some bit twiddling. This was motivated by enum
compares that are common in clang.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185632 91177308-0d34-0410-b5e6-96231b3b80d8
No functionality change.
It should suffice to check the type of a debug info metadata, instead of
calling Verify. For cases where we know the type of a DI metadata, use
assert.
Also update testing cases to make them conform to the format of DI classes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185135 91177308-0d34-0410-b5e6-96231b3b80d8
The Builtin attribute is an attribute that can be placed on function call site that signal that even though a function is declared as being a builtin,
rdar://problem/13727199
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185049 91177308-0d34-0410-b5e6-96231b3b80d8
No functionality change.
It should suffice to check the type of a debug info metadata, instead of
calling Verify.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185020 91177308-0d34-0410-b5e6-96231b3b80d8
This commit completely removes what is left of the simplify-libcalls
pass. All of the functionality has now been migrated to the instcombine
and functionattrs passes. The following C API functions are now NOPs:
1. LLVMAddSimplifyLibCallsPass
2. LLVMPassManagerBuilderSetDisableSimplifyLibCalls
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184459 91177308-0d34-0410-b5e6-96231b3b80d8
The problem this time seems to be a thinko. We were assuming that in the CFG
A
| \
| B
| /
C
speculating the basic block B would cause only the phi value for the B->C edge
to be speculated. That is not true, the phi's are semantically in the edges, so
if the A->B->C path is taken, any code needed for A->C is not executed and we
have to consider it too when deciding to speculate B.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183226 91177308-0d34-0410-b5e6-96231b3b80d8
PR16069 is an interesting case where an incoming value to a PHI is a
trap value while also being a 'ConstantExpr'.
We do not consider this case when performing the 'HoistThenElseCodeToIf'
optimization.
Instead, make our modifications more conservative if we detect that we
cannot transform the PHI to a select.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183152 91177308-0d34-0410-b5e6-96231b3b80d8
Extend LinkModules to pass a ValueMaterializer to RemapInstruction and friends to lazily create Functions for lazily linked globals. This is a big win when linking small modules with large (mostly unused) library modules.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182776 91177308-0d34-0410-b5e6-96231b3b80d8
Other passes, PPC counter-loop formation for example, also need to add loop
preheaders outside of the regular loop simplification pass. This makes
InsertPreheaderForLoop a global function so that it can be used by other
passes.
No functionality change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182299 91177308-0d34-0410-b5e6-96231b3b80d8
the things, and renames it to CBindingWrapping.h. I also moved
CBindingWrapping.h into Support/.
This new file just contains the macros for defining different wrap/unwrap
methods.
The calls to those macros, as well as any custom wrap/unwrap definitions
(like for array of Values for example), are put into corresponding C++
headers.
Doing this required some #include surgery, since some .cpp files relied
on the fact that including Wrap.h implicitly caused the inclusion of a
bunch of other things.
This also now means that the C++ headers will include their corresponding
C API headers; for example Value.h must include llvm-c/Core.h. I think
this is harmless, since the C API headers contain just external function
declarations and some C types, so I don't believe there should be any
nasty dependency issues here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180881 91177308-0d34-0410-b5e6-96231b3b80d8
This resurrects r179957, but adds code that makes sure we don't touch
atomic/volatile stores:
This transformation will transform a conditional store with a preceeding
uncondtional store to the same location:
a[i] =
may-alias with a[i] load
if (cond)
a[i] = Y
into an unconditional store.
a[i] = X
may-alias with a[i] load
tmp = cond ? Y : X;
a[i] = tmp
We assume that on average the cost of a mispredicted branch is going to be
higher than the cost of a second store to the same location, and that the
secondary benefits of creating a bigger basic block for other optimizations to
work on outway the potential case where the branch would be correctly predicted
and the cost of the executing the second store would be noticably reflected in
performance.
hmmer's execution time improves by 30% on an imac12,2 on ref data sets. With
this change we are on par with gcc's performance (gcc also performs this
transformation). There was a 1.2 % performance improvement on a ARM swift chip.
Other tests in the test-suite+external seem to be mostly uninfluenced in my
experiments:
This optimization was triggered on 41 tests such that the executable was
different before/after the patch. Only 1 out of the 40 tests (dealII) was
reproducable below 100% (by about .4%). Given that hmmer benefits so much I
believe this to be a fair trade off.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180731 91177308-0d34-0410-b5e6-96231b3b80d8
Since we can't guarantee that the original dbg.declare instrinsic
is removed by LowerDbgDeclare(), we need to make sure that we are
not inserting the same dbg.value intrinsic over and over.
This removes tons of redundant DIEs when compiling optimized code.
rdar://problem/13056109
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180615 91177308-0d34-0410-b5e6-96231b3b80d8
debug location. This solves a problem where range of an inlined
subroutine is emitted wrongly.
Patch by Manman Ren.
Fixes rdar://problem/12415623
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180140 91177308-0d34-0410-b5e6-96231b3b80d8
There is the temptation to make this tranform dependent on target information as
it is not going to be beneficial on all (sub)targets. Therefore, we should
probably do this in MI Early-Ifconversion.
This reverts commit r179957. Original commit message:
"SimplifyCFG: If convert single conditional stores
This transformation will transform a conditional store with a preceeding
uncondtional store to the same location:
a[i] =
may-alias with a[i] load
if (cond)
a[i] = Y
into an unconditional store.
a[i] = X
may-alias with a[i] load
tmp = cond ? Y : X;
a[i] = tmp
We assume that on average the cost of a mispredicted branch is going to be
higher than the cost of a second store to the same location, and that the
secondary benefits of creating a bigger basic block for other optimizations to
work on outway the potential case were the branch would be correctly predicted
and the cost of the executing the second store would be noticably reflected in
performance.
hmmer's execution time improves by 30% on an imac12,2 on ref data sets. With
this change we are on par with gcc's performance (gcc also performs this
transformation). There was a 1.2 % performance improvement on a ARM swift chip.
Other tests in the test-suite+external seem to be mostly uninfluenced in my
experiments:
This optimization was triggered on 41 tests such that the executable was
different before/after the patch. Only 1 out of the 40 tests (dealII) was
reproducable below 100% (by about .4%). Given that hmmer benefits so much I
believe this to be a fair trade off.
I am going to watch performance numbers across the builtbots and will revert
this if anything unexpected comes up."
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179980 91177308-0d34-0410-b5e6-96231b3b80d8
This transformation will transform a conditional store with a preceeding
uncondtional store to the same location:
a[i] =
may-alias with a[i] load
if (cond)
a[i] = Y
into an unconditional store.
a[i] = X
may-alias with a[i] load
tmp = cond ? Y : X;
a[i] = tmp
We assume that on average the cost of a mispredicted branch is going to be
higher than the cost of a second store to the same location, and that the
secondary benefits of creating a bigger basic block for other optimizations to
work on outway the potential case were the branch would be correctly predicted
and the cost of the executing the second store would be noticably reflected in
performance.
hmmer's execution time improves by 30% on an imac12,2 on ref data sets. With
this change we are on par with gcc's performance (gcc also performs this
transformation). There was a 1.2 % performance improvement on a ARM swift chip.
Other tests in the test-suite+external seem to be mostly uninfluenced in my
experiments:
This optimization was triggered on 41 tests such that the executable was
different before/after the patch. Only 1 out of the 40 tests (dealII) was
reproducable below 100% (by about .4%). Given that hmmer benefits so much I
believe this to be a fair trade off.
I am going to watch performance numbers across the builtbots and will revert
this if anything unexpected comes up.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179957 91177308-0d34-0410-b5e6-96231b3b80d8
If a switch instruction has a case for every possible value of its type,
with the same successor, SimplifyCFG would replace it with an icmp ult,
but the computation of the bound overflows in that case, which inverts
the test.
Patch by Jed Davis!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179587 91177308-0d34-0410-b5e6-96231b3b80d8
rather than checking if the source and destination have the same number of
arguments and copying the attributes over directly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179169 91177308-0d34-0410-b5e6-96231b3b80d8