These pseudos are no longer needed now that it is possible to represent
predicated instructions in SSA form.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163275 91177308-0d34-0410-b5e6-96231b3b80d8
Now that it is possible to dynamically tie MachineInstr operands,
predicated instructions are possible in SSA form:
%vreg3<def> = SUBri %vreg1, -2147483647, pred:14, pred:%noreg, %opt:%noreg
%vreg4<def,tied1> = MOVCCr %vreg3<tied0>, %vreg1, %pred:12, pred:%CPSR
Becomes a predicated SUBri with a tied imp-use:
SUBri %vreg1, -2147483647, pred:13, pred:%CPSR, opt:%noreg, %vreg1<imp-use,tied0>
This means that any instruction that is safe to move can be folded into
a MOVCC, and the *CC pseudo-instructions are no longer needed.
The test case changes reflect that Thumb2SizeReduce recognizes the
predicated instructions. It didn't understand the pseudos.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163274 91177308-0d34-0410-b5e6-96231b3b80d8
Since TOC is just defined for PPC64, move its definition to PPC64 td file.
Patch by Adhemerval Zanella.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163234 91177308-0d34-0410-b5e6-96231b3b80d8
Previous patch accidentally decided it couldn't convert a VFP to a
NEON instruction after it had already destroyed the old one. Not a
good move.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163230 91177308-0d34-0410-b5e6-96231b3b80d8
subreg_hireg of register pair Rp.
* lib/Target/Hexagon/HexagonPeephole.cpp(PeepholeDoubleRegsMap): New
DenseMap similar to PeepholeMap that additionally records subreg info
too.
(runOnMachineFunction): Record information in PeepholeDoubleRegsMap
and copy propagate the high sub-reg of Rp0 in Rp1 = lsr(Rp0, #32) to
the instruction Rx = COPY Rp1:logreg_subreg.
* test/CodeGen/Hexagon/remove_lsr.ll: New test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163214 91177308-0d34-0410-b5e6-96231b3b80d8
- CodeGenPrepare pass for identifying div/rem ops
- Backend specifies the type mapping using addBypassSlowDivType
- Enabled only for Intel Atom with O2 32-bit -> 8-bit
- Replace IDIV with instructions which test its value and use DIVB if the value
is positive and less than 256.
- In the case when the quotient and remainder of a divide are used a DIV
and a REM instruction will be present in the IR. In the non-Atom case
they are both lowered to IDIVs and CSE removes the redundant IDIV instruction,
using the quotient and remainder from the first IDIV. However,
due to this optimization CSE is not able to eliminate redundant
IDIV instructions because they are located in different basic blocks.
This is overcome by calculating both the quotient (DIV) and remainder (REM)
in each basic block that is inserted by the optimization and reusing the result
values when a subsequent DIV or REM instruction uses the same operands.
- Test cases check for the presents of the optimization when calculating
either the quotient, remainder, or both.
Patch by Tyler Nowicki!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163150 91177308-0d34-0410-b5e6-96231b3b80d8
Change current Hexagon MI scheduler to use new converging
scheduler. Integrates DFA resource model into it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163137 91177308-0d34-0410-b5e6-96231b3b80d8
This patch corrects the definition of umlal/smlal instructions and adds support
for matching them to the ARM dag combiner.
Bug 12213
Patch by Yin Ma!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163136 91177308-0d34-0410-b5e6-96231b3b80d8
the NumMCOperands argument to the GetMCInstOperandNum() function that is set
to the number of MCOperands this asm operand mapped to.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163124 91177308-0d34-0410-b5e6-96231b3b80d8
MatchInstructionImpl() function.
These values are used by the ConvertToMCInst() function to index into the
ConversionTable. The values are also needed to call the GetMCInstOperandNum()
function.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163101 91177308-0d34-0410-b5e6-96231b3b80d8
For example, the ARM target does not have efficient ISel handling for vector
selects with scalar conditions. This patch adds a TLI hook which allows the
different targets to report which selects are supported well and which selects
should be converted to CF duting codegen prepare.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163093 91177308-0d34-0410-b5e6-96231b3b80d8
NEON domain conversion was too heavy-handed with its widened
registers, which could have stripped existing instructions of their
dependency, leaving them vulnerable to scheduling errors.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163070 91177308-0d34-0410-b5e6-96231b3b80d8
output chain is correctly setup.
As an example, if the original load must happen before later stores, we need
to make sure the constructed VZEXT_LOAD is constrained to be before the stores.
rdar://11457792
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163036 91177308-0d34-0410-b5e6-96231b3b80d8
- In addition to undefined, if V2 is zero vector, skip 2nd PSHUFB and POR as
well as PSHUFB will zero elements with negative indices.
Patch by Sriram Murali <sriram.murali@intel.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163018 91177308-0d34-0410-b5e6-96231b3b80d8
on the size of the extraction and its position in the 64 bit word.
This patch allows support of the dext transformations with mips64 direct
object output.
0 <= msb < 32 0 <= lsb < 32 0 <= pos < 32 1 <= size <= 32
DINS
The field is entirely contained in the right-most word of the doubleword
32 <= msb < 64 0 <= lsb < 32 0 <= pos < 32 2 <= size <= 64
DINSM
The field straddles the words of the doubleword
32 <= msb < 64 32 <= lsb < 64 32 <= pos < 64 1 <= size <= 32
DINSU
The field is entirely contained in the left-most word of the doubleword
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163010 91177308-0d34-0410-b5e6-96231b3b80d8
Thumb2 instructions are mostly constrained to rGPR, not tGPR which is
for Thumb1.
rdar://problem/12203728
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162968 91177308-0d34-0410-b5e6-96231b3b80d8
The assembly string for the VMOVPQIto64rr instruction incorrectly lacked the 'v'
prefix, resulting in mis-assembly of the vanilla movd instruction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162963 91177308-0d34-0410-b5e6-96231b3b80d8
- Add 'UseSSEx' to force SSE legacy insn not being selected when AVX is
enabled.
As the penalty of inter-mixing SSE and AVX instructions, we need
prevent SSE legacy insn from being generated except explicitly
specified through some intrinsics. For patterns supported by both
SSE and AVX, so far, we force AVX insn will be tried first relying on
AddedComplexity or position in td file. It's error-prone and
introduces bugs accidentally.
'UseSSEx' is disabled when AVX is turned on. For SSE insns inherited
by AVX, we need this predicate to force VEX encoding or SSE legacy
encoding only.
For insns not inherited by AVX, we still use the previous predicates,
i.e. 'HasSSEx'. So far, these insns fall into the following
categories:
* SSE insns with MMX operands
* SSE insns with GPR/MEM operands only (xFENCE, PREFETCH, CLFLUSH,
CRC, and etc.)
* SSE4A insns.
* MMX insns.
* x87 insns added by SSE.
2 test cases are modified:
- test/CodeGen/X86/fast-isel-x86-64.ll
AVX code generation is different from SSE one. 'vcvtsi2sdq' cannot be
selected by fast-isel due to complicated pattern and fast-isel
fallback to materialize it from constant pool.
- test/CodeGen/X86/widen_load-1.ll
AVX code generation is different from SSE one after fixing SSE/AVX
inter-mixing. Exec-domain fixing prefers 'vmovapd' instead of
'vmovaps'.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162919 91177308-0d34-0410-b5e6-96231b3b80d8
[Tobias von Koch] What's happening here is that the CR6SET/CR6UNSET is breaking the chain of register copies glued to the function call (BL_SVR4 node). The scheduler then moves other instructions in between those and the function call, which isn't good!
Right. That's the case where there is no chain of register copies before the call, so InFlag == 0... Attached is a new revision of the patch which should fix this for good.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162916 91177308-0d34-0410-b5e6-96231b3b80d8