selfhost.
The 'Core.h' C-API header is part of the IR LLVM library. (One might
even argue it should be called IR.h, but that's a separate point.) We
can't include it into a Support header without violating the layering,
and in a way that breaks modules. MemoryBuffer's opaque C type was being
defined in the Core.h C-API header despite being in the Support library,
and thus we ended up with this weird issue.
It turns out that there were other constructs from the Support library
in the Core.h header. This patch lifts all of them into Support.h and
then includes that into Core.h.
The only possible fallout is if someone was including Support.h and
relying on Core.h to be visible for their own uses. Considering the
narrow interface actually provided by the C-API for the Support library,
this seems a very, very unlikely mistake.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203071 91177308-0d34-0410-b5e6-96231b3b80d8
A 'remark' is information that is not an error or a warning, but rather some
additional information provided to the user. In contrast to a 'note' a 'remark'
is an independent diagnostic, whereas a 'note' always depends on another
diagnostic.
A typical use case for remark nodes is information provided to the user, e.g.
information provided by the vectorizer about loops that have been vectorized.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202474 91177308-0d34-0410-b5e6-96231b3b80d8
This function adds an extra path argument to lto_module_create_from_memory.
The path argument will be passed to makeBuffer to make sure the MemoryBuffer
has a name and the created module has a module identifier.
This is mainly for emitting warning messages from the linker. When we emit
warning message on a module, we can use the module identifier.
rdar://15985737
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201114 91177308-0d34-0410-b5e6-96231b3b80d8
Sweep the codebase for common typos. Includes some changes to visible function
names that were misspelt.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200018 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds the target analysis passes (usually TargetTransformInfo) to the
codgen pipeline. We also expose now the AddAnalysisPasses method through the C
API, because the optimizer passes would also benefit from better target-specific
cost models.
Reviewed by Andrew Kaylor
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199926 91177308-0d34-0410-b5e6-96231b3b80d8
Adding a doxygen comment for each bit of API to indicate at which
LTO_API_VERSION each was available, manually gleaned from successive
git-blames. A few notes:
- LTO_API_VERSION was set to 3 at its introduction.
- I've indicated all the API introduced before LTO_API_VERSION was
around as available "prior to LTO_API_VERSION=3".
- A number of API changes neglected to bump LTO_API_VERSION. These I've
indicated as available at the *next* bump of LTO_API_VERSION.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199429 91177308-0d34-0410-b5e6-96231b3b80d8
Add a hook in the C API of LTO so that clients of the code generator can set
their own handler for the LLVM diagnostics.
The handler is defined like this:
typedef void (*lto_diagnostic_handler_t)(lto_codegen_diagnostic_severity_t
severity, const char *diag, void *ctxt)
- severity says how bad this is.
- diag is a string that contains the diagnostic message.
- ctxt is the registered context for this handler.
This hook is more general than the lto_get_error_message, since this function
keeps only the latest message and can only be queried when something went wrong
(no warning for instance).
<rdar://problem/15517596>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199338 91177308-0d34-0410-b5e6-96231b3b80d8
Reapply r199191, reverted in r199197 because it carelessly broke
Other/link-opts.ll. The problem was that calling
createInternalizePass("main") would select
createInternalizePass(bool("main")) instead of
createInternalizePass(ArrayRef<const char *>("main")). This commit
fixes the bug.
The original commit message follows.
Add API to LTOCodeGenerator to specify a strategy for the -internalize
pass.
This is a new attempt at Bill's change in r185882, which he reverted in
r188029 due to problems with the gold linker. This puts the onus on the
linker to decide whether (and what) to internalize.
In particular, running internalize before outputting an object file may
change a 'weak' symbol into an internal one, even though that symbol
could be needed by an external object file --- e.g., with arclite.
This patch enables three strategies:
- LTO_INTERNALIZE_FULL: the default (and the old behaviour).
- LTO_INTERNALIZE_NONE: skip -internalize.
- LTO_INTERNALIZE_HIDDEN: only -internalize symbols with hidden
visibility.
LTO_INTERNALIZE_FULL should be used when linking an executable.
Outputting an object file (e.g., via ld -r) is more complicated, and
depends on whether hidden symbols should be internalized. E.g., for
ld -r, LTO_INTERNALIZE_NONE can be used when -keep_private_externs, and
LTO_INTERNALIZE_HIDDEN can be used otherwise. However,
LTO_INTERNALIZE_FULL is inappropriate, since the output object file will
eventually need to link with others.
lto_codegen_set_internalize_strategy() sets the strategy for subsequent
calls to lto_codegen_write_merged_modules() and lto_codegen_compile*().
<rdar://problem/14334895>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199244 91177308-0d34-0410-b5e6-96231b3b80d8
Representing dllexport/dllimport as distinct linkage types prevents using
these attributes on templates and inline functions.
Instead of introducing further mixed linkage types to include linkonce and
weak ODR, the old import/export linkage types are replaced with a new
separate visibility-like specifier:
define available_externally dllimport void @f() {}
@Var = dllexport global i32 1, align 4
Linkage for dllexported globals and functions is now equal to their linkage
without dllexport. Imported globals and functions must be either
declarations with external linkage, or definitions with
AvailableExternallyLinkage.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199218 91177308-0d34-0410-b5e6-96231b3b80d8
Representing dllexport/dllimport as distinct linkage types prevents using
these attributes on templates and inline functions.
Instead of introducing further mixed linkage types to include linkonce and
weak ODR, the old import/export linkage types are replaced with a new
separate visibility-like specifier:
define available_externally dllimport void @f() {}
@Var = dllexport global i32 1, align 4
Linkage for dllexported globals and functions is now equal to their linkage
without dllexport. Imported globals and functions must be either
declarations with external linkage, or definitions with
AvailableExternallyLinkage.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199204 91177308-0d34-0410-b5e6-96231b3b80d8
Add API to LTOCodeGenerator to specify a strategy for the -internalize
pass.
This is a new attempt at Bill's change in r185882, which he reverted in
r188029 due to problems with the gold linker. This puts the onus on the
linker to decide whether (and what) to internalize.
In particular, running internalize before outputting an object file may
change a 'weak' symbol into an internal one, even though that symbol
could be needed by an external object file --- e.g., with arclite.
This patch enables three strategies:
- LTO_INTERNALIZE_FULL: the default (and the old behaviour).
- LTO_INTERNALIZE_NONE: skip -internalize.
- LTO_INTERNALIZE_HIDDEN: only -internalize symbols with hidden
visibility.
LTO_INTERNALIZE_FULL should be used when linking an executable.
Outputting an object file (e.g., via ld -r) is more complicated, and
depends on whether hidden symbols should be internalized. E.g., for
ld -r, LTO_INTERNALIZE_NONE can be used when -keep_private_externs, and
LTO_INTERNALIZE_HIDDEN can be used otherwise. However,
LTO_INTERNALIZE_FULL is inappropriate, since the output object file will
eventually need to link with others.
lto_codegen_set_internalize_strategy() sets the strategy for subsequent
calls to lto_codegen_write_merged_modules() and lto_codegen_compile*().
<rdar://problem/14334895>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199191 91177308-0d34-0410-b5e6-96231b3b80d8
SymbolLookUp() call back to return a demangled C++ name to
be used as a comment.
For example darwin's otool(1) program the uses the llvm
disassembler now can produce disassembly like:
callq __ZNK4llvm6Target20createMCDisassemblerERKNS_15MCSubtargetInfoE ## llvm::Target::createMCDisassembler(llvm::MCSubtargetInfo const&) const
Also fix a bug in LLVMDisasmInstruction() that was not flushing
the raw_svector_ostream for the disassembled instruction string
before copying it to the output buffer that was causing truncation
of the output.
rdar://10173828
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198637 91177308-0d34-0410-b5e6-96231b3b80d8
The inalloca attribute is designed to support passing C++ objects by
value in the Microsoft C++ ABI. It behaves the same as byval, except
that it always implies that the argument is in memory and that the bytes
are never copied. This attribute allows the caller to take the address
of an outgoing argument's memory and execute arbitrary code to store
into it.
This patch adds basic IR support, docs, and verification. It does not
attempt to implement any lowering or fix any possibly broken transforms.
When this patch lands, a complete description of this feature should
appear at http://llvm.org/docs/InAlloca.html .
Differential Revision: http://llvm-reviews.chandlerc.com/D2173
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197645 91177308-0d34-0410-b5e6-96231b3b80d8
This adds a loop rerolling pass: the opposite of (partial) loop unrolling. The
transformation aims to take loops like this:
for (int i = 0; i < 3200; i += 5) {
a[i] += alpha * b[i];
a[i + 1] += alpha * b[i + 1];
a[i + 2] += alpha * b[i + 2];
a[i + 3] += alpha * b[i + 3];
a[i + 4] += alpha * b[i + 4];
}
and turn them into this:
for (int i = 0; i < 3200; ++i) {
a[i] += alpha * b[i];
}
and loops like this:
for (int i = 0; i < 500; ++i) {
x[3*i] = foo(0);
x[3*i+1] = foo(0);
x[3*i+2] = foo(0);
}
and turn them into this:
for (int i = 0; i < 1500; ++i) {
x[i] = foo(0);
}
There are two motivations for this transformation:
1. Code-size reduction (especially relevant, obviously, when compiling for
code size).
2. Providing greater choice to the loop vectorizer (and generic unroller) to
choose the unrolling factor (and a better ability to vectorize). The loop
vectorizer can take vector lengths and register pressure into account when
choosing an unrolling factor, for example, and a pre-unrolled loop limits that
choice. This is especially problematic if the manual unrolling was optimized
for a machine different from the current target.
The current implementation is limited to single basic-block loops only. The
rerolling recognition should work regardless of how the loop iterations are
intermixed within the loop body (subject to dependency and side-effect
constraints), but the significant restriction is that the order of the
instructions in each iteration must be identical. This seems sufficient to
capture all current use cases.
This pass is not currently enabled by default at any optimization level.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194939 91177308-0d34-0410-b5e6-96231b3b80d8
stack traces by default if you use PrettyStackTraceProgram, so that existing LLVM-based
tools will continue to get it without any changes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193971 91177308-0d34-0410-b5e6-96231b3b80d8
linkonce_odr_auto_hide was in incomplete attempt to implement a way
for the linker to hide symbols that are known to be available in every
TU and whose addresses are not relevant for a particular DSO.
It was redundant in that it all its uses are equivalent to
linkonce_odr+unnamed_addr. Unlike those, it has never been connected
to clang or llvm's optimizers, so it was effectively dead.
Given that nothing produces it, this patch just nukes it
(other than the llvm-c enum value).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193865 91177308-0d34-0410-b5e6-96231b3b80d8
Objective-C data structures.
This is allows tools such as darwin's otool(1) that uses the
LLVM disassembler take a pointer value being loaded by
an instruction and add a comment to what it is being referenced
to make following disassembly of Objective-C programs
more readable.
For example disassembling the Mac OS X TextEdit app one
will see comments like the following:
movq 0x20684(%rip), %rsi ## Objc selector ref: standardUserDefaults
movq 0x21985(%rip), %rdi ## Objc class ref: _OBJC_CLASS_$_NSUserDefaults
movq 0x1d156(%rip), %r14 ## Objc message: +[NSUserDefaults standardUserDefaults]
leaq 0x23615(%rip), %rdx ## Objc cfstring ref: @"SelectLinePanel"
callq 0x10001386c ## Objc message: -[[%rdi super] initWithWindowNibName:]
These diffs also include putting quotes around C strings
in literal pools and uses "symbol address" in the comment
when adding a symbol name to the comment to tell these
types of references apart:
leaq 0x4f(%rip), %rax ## literal pool for: "Hello world"
movq 0x1c3ea(%rip), %rax ## literal pool symbol address: ___stack_chk_guard
Of course the easy changes are in the LLVM disassembler and
the hard work is up to the implementer of the SymbolLookUp()
call back.
rdar://10602439
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193833 91177308-0d34-0410-b5e6-96231b3b80d8
There are two ways one could implement hiding of linkonce_odr symbols in LTO:
* LLVM tells the linker which symbols can be hidden if not used from native
files.
* The linker tells LLVM which symbols are not used from other object files,
but will be put in the dso symbol table if present.
GOLD's API is the second option. It was implemented almost 1:1 in llvm by
passing the list down to internalize.
LLVM already had partial support for the first option. It is also very similar
to how ld64 handles hiding these symbols when *not* doing LTO.
This patch then
* removes the APIs for the DSO list.
* marks LTO_SYMBOL_SCOPE_DEFAULT_CAN_BE_HIDDEN all linkonce_odr unnamed_addr
global values and other linkonce_odr whose address is not used.
* makes the gold plugin responsible for handling the API mismatch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193800 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r193255 and instead creates an lto_bool_t typedef
that points to bool, _Bool, or unsigned char depending on what is
available. Only recent versions of MSVC provide a stdbool.h header.
Reviewers: rafael.espindola
Differential Revision: http://llvm-reviews.chandlerc.com/D2019
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193377 91177308-0d34-0410-b5e6-96231b3b80d8