alloca that only holds a copy of a global and we're going to replace the users
of the alloca with that global, just nuke the lifetime intrinsics. Part of
PR10121.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133905 91177308-0d34-0410-b5e6-96231b3b80d8
type's bitwidth matches the (allocated) size of the alloca. This severely
pessimizes vector scalar replacement when the only vector type being used is
something like <3 x float> on x86 or ARM whose allocated size matches a
<4 x float>.
I hope to fix some of the flawed assumptions about allocated size throughout
scalar replacement and reenable this in most cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133338 91177308-0d34-0410-b5e6-96231b3b80d8
spartan right now, but I plan to encode more information in this enum to improve
the correctness and reliability of SRoA. At least this first pass makes it
possible to make VectorTy an actual VectorType.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132937 91177308-0d34-0410-b5e6-96231b3b80d8
assuming that all offsets are legal vector accesses, and thus trying to access
the float member of { <2 x float>, float } as the 3rd element of the first
member.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132766 91177308-0d34-0410-b5e6-96231b3b80d8
former was using the size of the entire alloca, whereas the latter was correctly using
the allocated size of the immediate type being converted (which may differ from the size
of the alloca). This fixes PR10082.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132759 91177308-0d34-0410-b5e6-96231b3b80d8
return the pointer being dereferenced, it returns the pointee, but a call
might return the pointer itself.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@130979 91177308-0d34-0410-b5e6-96231b3b80d8
generated by llvm-gcc, since llvm-gcc uses 2 i64s for passing a 4 x float
vector on ARM rather than an i64 array like Clang.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129878 91177308-0d34-0410-b5e6-96231b3b80d8
the same allocation size but different primitive sizes(e.g., <3xi32> and
<4xi32>). When ScalarRepl promotes them, it can't use a bit cast but
should use a shuffle vector instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129472 91177308-0d34-0410-b5e6-96231b3b80d8
vector types. This helps a lot with inlined functions when using the ARM soft
float ABI. Fixes <rdar://problem/9184212>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128453 91177308-0d34-0410-b5e6-96231b3b80d8
chose is having a non-memcpy/memset use and being larger than any native integer
type. Originally I chose having an access of a size smaller than the total size
of the alloca, but this caused some minor issues on the spirit benchmark where
SRoA runs again after some inlining.
This fixes <rdar://problem/8613163>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127718 91177308-0d34-0410-b5e6-96231b3b80d8
alloca as both integer and floating-point vectors of the same size. Bugpoint is
not cooperating with me, but I'll try to find a manual testcase tomorrow.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127320 91177308-0d34-0410-b5e6-96231b3b80d8
a union of a float, <2 x float>, and <4 x float>. This mostly comes up with the
use of vector intrinsics, especially in NEON when programmers know the layout of
the register file. This enables codegen to eliminate a lot of the subregister
traffic it would otherwise generate.
This commit only enables this for a small number of floating-point cases, but a
lot more integer cases. I assume this is okay for all ports, but I did not do
extensive testing of the quality of code involving i512 vectors and the like. If
there is a use case where this generates worse code than before, let me know and
we can scale it back.
This fixes <rdar://problem/9036264>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127317 91177308-0d34-0410-b5e6-96231b3b80d8
with BasicAA's DecomposeGEPExpression, which recently began
using a TargetData. This fixes PR8968, though the testcase
is awkward to reduce.
Also, update several off GetUnderlyingObject's users
which happen to have a TargetData handy to pass it in.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@124134 91177308-0d34-0410-b5e6-96231b3b80d8
occurs because instcombine sinks loads and inserts phis. This kicks in
on such apps as 175.vpr, eon, 403.gcc, xalancbmk and a bunch of times in
spec2006 in some app that uses std::deque.
This resolves the last of rdar://7339113.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@124090 91177308-0d34-0410-b5e6-96231b3b80d8
common cases. This triggers a surprising number of times in SPEC2K6
because min/max idioms end up doing this. For example, code from the
STL ends up looking like this to SRoA:
%202 = load i64* %__old_size, align 8, !tbaa !3
%203 = load i64* %__old_size, align 8, !tbaa !3
%204 = load i64* %__n, align 8, !tbaa !3
%205 = icmp ult i64 %203, %204
%storemerge.i = select i1 %205, i64* %__n, i64* %__old_size
%206 = load i64* %storemerge.i, align 8, !tbaa !3
We can now promote both the __n and the __old_size allocas.
This addresses another chunk of rdar://7339113, poor codegen on
stringswitch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@124088 91177308-0d34-0410-b5e6-96231b3b80d8
that have PHI or select uses of their element pointers. This can often happen
when instcombine sinks two loads into a successor, inserting a phi or select.
With this patch, we can scalarize the alloca, but the pinned elements are not
yet promoted. This is still a win for large aggregates where only one element
is used. This fixes rdar://8904039 and part of rdar://7339113 (poor codegen
on stringswitch).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@124070 91177308-0d34-0410-b5e6-96231b3b80d8
handle the "Transformation preventing inst" printing,
so that -scalarrepl -debug will always print the rejected
instruction. No functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@124066 91177308-0d34-0410-b5e6-96231b3b80d8
checks enabled:
1) Use '<' to compare integers in a comparison function rather than '<='.
2) Use the uniqued set DefBlocks rather than Info.DefiningBlocks to initialize
the priority queue.
The speedup of scalarrepl on test-suite + SPEC2000 + SPEC2006 is a bit less, at
just under 16% rather than 17%.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123662 91177308-0d34-0410-b5e6-96231b3b80d8
eliminating a potentially quadratic data structure, this also gives a 17%
speedup when running -scalarrepl on test-suite + SPEC2000 + SPEC2006. My initial
experiment gave a greater speedup around 25%, but I moved the dominator tree
level computation from dominator tree construction to PromoteMemToReg.
Since this approach to computing IDFs has a much lower overhead than the old
code using precomputed DFs, it is worth looking at using this new code for the
second scalarrepl pass as well.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123609 91177308-0d34-0410-b5e6-96231b3b80d8