ARM in particular is getting dangerously close to exceeding 32 bits worth of
possible subtarget features. When this happens, various parts of MC start to
fail inexplicably as masks get truncated to "unsigned".
Mostly just refactoring at present, and there's probably no way to test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215887 91177308-0d34-0410-b5e6-96231b3b80d8
It should remove dosens of lines in handling instrinsics (in a huge switch) and give an easy way to add new intrinsics.
I did not completed to move al intrnsics to the table, I'll do this in the upcomming commits.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215826 91177308-0d34-0410-b5e6-96231b3b80d8
MSVC gives this awesome diagnostic:
..\lib\Target\X86\X86ISelLowering.cpp(7085) : error C2971: 'llvm::VariadicFunction1' : template parameter 'Func' : 'isShuffleEquivalentImpl' : a local variable cannot be used as a non-type argument
..\include\llvm/ADT/VariadicFunction.h(153) : see declaration of 'llvm::VariadicFunction1'
..\lib\Target\X86\X86ISelLowering.cpp(7061) : see declaration of 'isShuffleEquivalentImpl'
Using an anonymous namespace makes the problem go away.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215744 91177308-0d34-0410-b5e6-96231b3b80d8
the new shuffle lowering and an implementation for v4 shuffles.
This allows us to handle non-half-crossing shuffles directly for v4
shuffles, both integer and floating point. This currently misses places
where we could perform the blend via UNPCK instructions, but otherwise
generates equally good or better code for the test cases included to the
existing vector shuffle lowering. There are a few cases that are
entertainingly better. ;]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215702 91177308-0d34-0410-b5e6-96231b3b80d8
BLENDPS, BLENDPD, and PBLENDW instructions into pretty shuffle comments.
These will be used in my next commit as part of test cases for AVX
shuffles which can directly use blend in more places.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215701 91177308-0d34-0410-b5e6-96231b3b80d8
elements of a shuffle mask and simplify how it works. No functionality
changed now that the bug that was here has been fixed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215696 91177308-0d34-0410-b5e6-96231b3b80d8
target-specific shuffl DAG combines.
We were recognizing the paired shuffles backwards. This code needs to be
replaced anyways as we have the same functionality elsewhere, but I'll
do the refactoring in a follow-up, this is the minimal fix to the
behavior.
In addition to fixing miscompiles with the new vector shuffle lowering,
it also causes the canonicalization to kick in much better, selecting
the smaller encoding variants in lots of places in the new AVX path.
This still isn't quite ideal as we don't need both the shufpd and the
punpck instructions, but that'll get fixed in a follow-up patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215690 91177308-0d34-0410-b5e6-96231b3b80d8
broken logic for merging shuffle masks in the face of SM_SentinelZero
mask operands.
While these are '-1' they don't mean 'undef' the way '-1' means in the
pre-legalized shuffle masks. Instead, they mean that the shuffle
operation is forcibly zeroing that lane. Reflect this and explicitly
handle it in a bunch of places. In one place the effect is equivalent
but much more clear. In the rest it was really weirdly broken.
Also, rewrite the entire merging thing to be a more directy operation
with a single loop and just doing math to map the indices through the
various masks.
Also add a bunch of asserts to try to make in extremely clear what the
different masks can possibly look like.
Finally, add some comments to clarify that we're merging shuffle masks
*up* here rather than *down* as we do everywhere else, and thus the
logic is quite confusing.
Thanks to several different people for sending test cases, and for
Robert Khasanov for an initial attempt at fixing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215687 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts:
r215595 "[FastISel][X86] Add large code model support for materializing floating-point constants."
r215594 "[FastISel][X86] Use XOR to materialize the "0" value."
r215593 "[FastISel][X86] Emit more efficient instructions for integer constant materialization."
r215591 "[FastISel][AArch64] Make use of the zero register when possible."
r215588 "[FastISel] Let the target decide first if it wants to materialize a constant."
r215582 "[FastISel][AArch64] Cleanup constant materialization code. NFCI."
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215673 91177308-0d34-0410-b5e6-96231b3b80d8
No functional change. This will be used by the new FMA intrinsic lowering
code.
We can probably add NO_EXC here as well, I am just not too familiar with this
part of AVX512 yet. We can add that later.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215662 91177308-0d34-0410-b5e6-96231b3b80d8
This change further evolves the base class AVX512_masking in order to make it
suitable for the masking variants of the FMA instructions.
Besides AVX512_masking there is now a new base class that instructions
including FMAs can use: AVX512_masking_3src. With three-source (destructive)
instructions one of the sources is already tied to the destination. This
difference from AVX512_masking is captured by this new class. The common bits
between _masking and _masking_3src are broken out into a new super class
called AVX512_masking_common.
As with valign, there is some corresponding restructuring of the underlying
format classes. The idea is the same we want to derive from two classes
essentially: one providing the format bits and another format-independent
multiclass supplying the various masking and non-masking instruction variants.
Existing fma tests in avx512-fma*.ll provide coverage here for the non-masking
variants. For masking, the next patches in the series will add intrinsics and
intrinsic tests.
For AVX512_masking_3src to work, the (ins ...) dag has to be passed *without*
the leading source operand that is tied to dst ($src1). This is necessary to
properly construct the (ins ...) for the different variants. For the record,
I did check that if $src is mistakenly included, you do get a fairly intuitive
error message from the tablegen backend.
Part of <rdar://problem/17688758>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215660 91177308-0d34-0410-b5e6-96231b3b80d8
lowering scheme.
Currently, this just directly bails to the fallback path of splitting
the 256-bit vector into two 128-bit vectors, operating there, and then
joining the results back together. While the results are far from
perfect, they are *shockingly* good for what we're doing here. I'll be
layering the rest of the functionality on top of this piece by piece and
updating tests as I go.
Note that 256-bit vectors in this mode are still somewhat WIP. While
I think the code paths that I'm adding here are clean and good-to-go,
there are still a lot of 128-bit assumptions that I'll need to stomp out
as I march through the functional spread here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215637 91177308-0d34-0410-b5e6-96231b3b80d8
In the large code model for X86 floating-point constants are placed in the
constant pool and materialized by loading from it. Since the constant pool
could be far away, a PC relative load might not work. Therefore we first
materialize the address of the constant pool with a movabsq and then load
from there the floating-point value.
Fixes <rdar://problem/17674628>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215595 91177308-0d34-0410-b5e6-96231b3b80d8
This mostly affects the i64 value type, which always resulted in an 15byte
mobavsq instruction to materialize any constant. The custom code checks the
value of the immediate and tries to use a different and smaller mov
instruction when possible.
This fixes <rdar://problem/17420988>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215593 91177308-0d34-0410-b5e6-96231b3b80d8
Split the constant materialization code into three separate helper functions for
Integer-, Floating-Point-, and GlobalValue-Constants.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215586 91177308-0d34-0410-b5e6-96231b3b80d8
Add header guards to files that were missing guards. Remove #endif comments
as they don't seem common in LLVM (we can easily add them back if we decide
they're useful)
Changes made by clang-tidy with minor tweaks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215558 91177308-0d34-0410-b5e6-96231b3b80d8
Added avx512_movnt_vl multiclass for handling 256/128-bit forms of instruction.
Added encoding and lowering tests.
Reviewed by Elena Demikhovsky <elena.demikhovsky@intel.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215536 91177308-0d34-0410-b5e6-96231b3b80d8
one pesky test case correctly.
This test case caused the old code to infloop occilating between solving
the low-half and the high-half. The 'side balancing' part of
single-input v8 shuffle lowering didn't handle the one pattern which can
cause it to occilate. Fortunately the fuzz testing found this case.
Unfortuately it was *terrible* to handle. I'm really sorry for the
amount and density of the code here, I'd love suggestions on how to
simplify it. I feel like there *must* be a simpler form here, but after
a lot of days I've not found it. This is the only one I've found that
even works. I've added the one pesky test case along with some nice
comments explaining the core problem that we have to solve here.
So far this has survived approximately 32k test cases. More strenuous
fuzzing commencing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215519 91177308-0d34-0410-b5e6-96231b3b80d8
I think that this will scale better in most cases than adding a Pat<> for each
mapping from the intrinsic DAG to the intruction (i.e. rri, rrik, rrikz). We
can just lower to the SDNode and have the resulting DAG be matches by the DAG
patterns.
Alternatively (long term), we could keep the Pat<>s but generate them via the
new AVX512_masking multiclass. The difficulty is that in order to formulate
that we would have to concatenate DAGs. Currently this is only supported if
the operators of the input DAGs are identical.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215473 91177308-0d34-0410-b5e6-96231b3b80d8