these DAG combines.
The DAG auto-CSE thing is truly terrible. Due to it, when RAUW-ing
a node with its operand, you can cause its uses to CSE to itself, which
then causes their uses to become your uses which causes them to be
picked up by the RAUW. For nodes that are determined to be "no-ops",
this is "fine". But if the RAUW is one of several steps to enact
a transformation, this causes the DAG to really silently eat an discard
nodes that you would never expect. It took days for me to actually
pinpoint a test case triggering this and a really frustrating amount of
time to even comprehend the bug because I never even thought about the
ability of RAUW to iteratively consume nodes due to CSE-ing them into
itself.
To fix this, we have to build up a brand-new chain of operations any
time we are combining across (potentially) intervening nodes. But once
the logic is added to do this, another issue surfaces: CombineTo eagerly
deletes the one node combined, *but no others*. This is... really
frustrating. If deleting it makes its operands become dead, those
operand nodes often won't go onto the worklist in the
order you would want -- they're already on it and not near the top. That
means things higher on the worklist will get combined prior to these
dead nodes being GCed out of the worklist, and if the chain is long, the
immediate users won't be enough to re-detect where the root of the chain
is that became single-use again after deleting the dead nodes. The
better way to do this is to never immediately delete nodes, and instead
to just enqueue them so we can recursively delete them. The
combined-from node is typically not on the worklist anyways by virtue of
having been popped off.... But that in turn breaks other tests that
*require* CombineTo to delete unused nodes. :: sigh ::
Fortunately, there is a better way. This whole routine should have been
returning the replacement rather than using CombineTo which is quite
hacky. Switch to that, and all the pieces fall together.
I suspect the same kind of miscompile is possible in the half-shuffle
folding code, and potentially the recursive folding code. I'll be
switching those over to a pattern more like this one for safety's sake
even though I don't immediately have any test cases for them. Note that
the only way I got a test case for this instance was with *heavily* DAG
combined 256-bit shuffle sequences generated by my fuzzer. ;]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216319 91177308-0d34-0410-b5e6-96231b3b80d8
the new shuffle lowering and an implementation for v4 shuffles.
This allows us to handle non-half-crossing shuffles directly for v4
shuffles, both integer and floating point. This currently misses places
where we could perform the blend via UNPCK instructions, but otherwise
generates equally good or better code for the test cases included to the
existing vector shuffle lowering. There are a few cases that are
entertainingly better. ;]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215702 91177308-0d34-0410-b5e6-96231b3b80d8
target-specific shuffl DAG combines.
We were recognizing the paired shuffles backwards. This code needs to be
replaced anyways as we have the same functionality elsewhere, but I'll
do the refactoring in a follow-up, this is the minimal fix to the
behavior.
In addition to fixing miscompiles with the new vector shuffle lowering,
it also causes the canonicalization to kick in much better, selecting
the smaller encoding variants in lots of places in the new AVX path.
This still isn't quite ideal as we don't need both the shufpd and the
punpck instructions, but that'll get fixed in a follow-up patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215690 91177308-0d34-0410-b5e6-96231b3b80d8
lowering scheme.
Currently, this just directly bails to the fallback path of splitting
the 256-bit vector into two 128-bit vectors, operating there, and then
joining the results back together. While the results are far from
perfect, they are *shockingly* good for what we're doing here. I'll be
layering the rest of the functionality on top of this piece by piece and
updating tests as I go.
Note that 256-bit vectors in this mode are still somewhat WIP. While
I think the code paths that I'm adding here are clean and good-to-go,
there are still a lot of 128-bit assumptions that I'll need to stomp out
as I march through the functional spread here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215637 91177308-0d34-0410-b5e6-96231b3b80d8