define below all header includes in the lib/CodeGen/... tree. While the
current modules implementation doesn't check for this kind of ODR
violation yet, it is likely to grow support for it in the future. It
also removes one layer of macro pollution across all the included
headers.
Other sub-trees will follow.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206837 91177308-0d34-0410-b5e6-96231b3b80d8
Win64 stack unwinder gets confused when execution flow "falls through" after
a call to 'noreturn' function. This fixes the "missing epilogue" problem by
emitting a trap instruction for IR 'unreachable' on x86_x64-pc-windows.
A secondary use for it would be for anyone wanting to make double-sure that
'noreturn' functions, indeed, do not return.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206684 91177308-0d34-0410-b5e6-96231b3b80d8
handles Intrinsic::trap if TargetOptions::TrapFuncName is set.
This fixes a bug in which the trap function was not taken into consideration
when a program was compiled without optimization (at -O0).
<rdar://problem/16291933>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206323 91177308-0d34-0410-b5e6-96231b3b80d8
ARM64 suffered multiple -verify-machineinstr failures (principally over the
xsp/xzr issue) because FastISel was completely ignoring which subset of the
general-purpose registers each instruction required.
More fixes are coming in ARM64 specific FastISel, but this should cover the
generic problems.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206283 91177308-0d34-0410-b5e6-96231b3b80d8
operator* on the by-operand iterators to return a MachineOperand& rather than
a MachineInstr&. At this point they almost behave like normal iterators!
Again, this requires making some existing loops more verbose, but should pave
the way for the big range-based for-loop cleanups in the future.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203865 91177308-0d34-0410-b5e6-96231b3b80d8
This requires a number of steps.
1) Move value_use_iterator into the Value class as an implementation
detail
2) Change it to actually be a *Use* iterator rather than a *User*
iterator.
3) Add an adaptor which is a User iterator that always looks through the
Use to the User.
4) Wrap these in Value::use_iterator and Value::user_iterator typedefs.
5) Add the range adaptors as Value::uses() and Value::users().
6) Update *all* of the callers to correctly distinguish between whether
they wanted a use_iterator (and to explicitly dig out the User when
needed), or a user_iterator which makes the Use itself totally
opaque.
Because #6 requires churning essentially everything that walked the
Use-Def chains, I went ahead and added all of the range adaptors and
switched them to range-based loops where appropriate. Also because the
renaming requires at least churning every line of code, it didn't make
any sense to split these up into multiple commits -- all of which would
touch all of the same lies of code.
The result is still not quite optimal. The Value::use_iterator is a nice
regular iterator, but Value::user_iterator is an iterator over User*s
rather than over the User objects themselves. As a consequence, it fits
a bit awkwardly into the range-based world and it has the weird
extra-dereferencing 'operator->' that so many of our iterators have.
I think this could be fixed by providing something which transforms
a range of T&s into a range of T*s, but that *can* be separated into
another patch, and it isn't yet 100% clear whether this is the right
move.
However, this change gets us most of the benefit and cleans up
a substantial amount of code around Use and User. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203364 91177308-0d34-0410-b5e6-96231b3b80d8
Stop folding constant adds into GEP when the type size doesn't match.
Otherwise, the adds' operands are effectively being promoted, changing the
conditions of an overflow. Results are different when:
sext(a) + sext(b) != sext(a + b)
Problem originally found on x86-64, but also fixed issues with ARM and PPC,
which used similar code.
<rdar://problem/15292280>
Patch by Duncan Exon Smith!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194840 91177308-0d34-0410-b5e6-96231b3b80d8
Use the DIVariable::isIndirect() flag set by the frontend instead of
guessing whether to set the machine location's indirection bit.
Paired commit with CFE.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190961 91177308-0d34-0410-b5e6-96231b3b80d8
A DBG_VALUE is register-indirect iff the first operand is a register
_and_ the second operand is an immediate.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190821 91177308-0d34-0410-b5e6-96231b3b80d8
Change the informal convention of DBG_VALUE machine instructions so that
we can express a register-indirect address with an offset of 0.
The old convention was that a DBG_VALUE is a register-indirect value if
the offset (operand 1) is nonzero. The new convention is that a DBG_VALUE
is register-indirect if the first operand is a register and the second
operand is an immediate. For plain register values the combination reg,
reg is used. MachineInstrBuilder::BuildMI knows how to build the new
DBG_VALUES.
rdar://problem/13658587
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185966 91177308-0d34-0410-b5e6-96231b3b80d8
Compute the insertion point from the end of the basic block instead of
skipping labels from the front.
This caused failures in landing pads when live-in copies where inserted
before instruction selection.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185616 91177308-0d34-0410-b5e6-96231b3b80d8
No functionality change.
It should suffice to check the type of a debug info metadata, instead of
calling Verify. For cases where we know the type of a DI metadata, use
assert.
Also update testing cases to make them conform to the format of DI classes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185135 91177308-0d34-0410-b5e6-96231b3b80d8
A FastISel optimization was causing us to emit no information for such
parameters & when they go missing we end up emitting a different
function type. By avoiding that shortcut we not only get types correct
(very important) but also location information (handy) - even if it's
only live at the start of a function & may be clobbered later.
Reviewed/discussion by Evan Cheng & Dan Gohman.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184604 91177308-0d34-0410-b5e6-96231b3b80d8
Rather than using the full power of target-specific addressing modes in
DBG_VALUEs with Frame Indicies, simply use Frame Index + Offset. This
reduces the complexity of debug info handling down to two
representations of values (reg+offset and frame index+offset) rather
than three or four.
Ideally we could ensure that frame indicies had been eliminated by the
time we reached an assembly or dwarf generation, but I haven't spent the
time to figure out where the FIs are leaking through into that & whether
there's a good place to convert them. Some FI+offset=>reg+offset
conversion is done (see PrologEpilogInserter, for example) which is
necessary for some SelectionDAG assumptions about registers, I believe,
but it might be possible to make this a more thorough conversion &
ensure there are no remaining FIs no matter how instruction selection
is performed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184066 91177308-0d34-0410-b5e6-96231b3b80d8
register-indirect address with an offset of 0.
It used to be that a DBG_VALUE is a register-indirect value if the offset
(operand 1) is nonzero. The new convention is that a DBG_VALUE is
register-indirect if the first operand is a register and the second
operand is an immediate. For plain registers use the combination reg, reg.
rdar://problem/13658587
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180816 91177308-0d34-0410-b5e6-96231b3b80d8
trying to move as much FastISel logic as possible out of the main path in
SelectionDAGISel - intermixing them just adds confusion.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179902 91177308-0d34-0410-b5e6-96231b3b80d8
immediate in a register. I don't believe this should ever fail, but I see no
harm in trying to make this code bullet proof.
I've added an assert to ensure my assumtion is correct. If the assertion fires
something is wrong and we should fix it, rather then just silently fall back to
SelectionDAG isel.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178305 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Statistics are still available in Release+Asserts (any +Asserts builds),
and stats can also be turned on with LLVM_ENABLE_STATS.
Move some of the FastISel stats that were moved under DEBUG()
back out of DEBUG(), since stats are disabled across the board now.
Many tests depend on grepping "-stats" output. Move those into
a orig_dir/Stats/. so that they can be marked as unsupported
when building without statistics.
Differential Revision: http://llvm-reviews.chandlerc.com/D486
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176733 91177308-0d34-0410-b5e6-96231b3b80d8
It was incorrectly checking a Function* being an IntrinsicInst* which
isn't possible. It should always have been checking the CallInst* instead.
Added test case for x86 which ensures we only get one constant load.
It was 2 before this change.
rdar://problem/13267920
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175853 91177308-0d34-0410-b5e6-96231b3b80d8
function is successfully handled by fast-isel. That's because function
arguments are *always* handled by SDISel. Introduce FastLowerArguments to
allow each target to provide hook to handle formal argument lowering.
As a proof-of-concept, add ARMFastIsel::FastLowerArguments to handle
functions with 4 or fewer scalar integer (i8, i16, or i32) arguments. It
completely eliminates the need for SDISel for trivial functions.
rdar://13163905
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174855 91177308-0d34-0410-b5e6-96231b3b80d8
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171366 91177308-0d34-0410-b5e6-96231b3b80d8
TargetLowering::getRegClassFor).
Some isSimple() guards were missing, or getSimpleVT() were hoisted too
far, resulting in asserts on valid LLVM assembly input.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170336 91177308-0d34-0410-b5e6-96231b3b80d8
Accordingly, add helper funtions getSimpleValueType (in parallel to
getValueType) in SDValue, SDNode, and TargetLowering.
This is the first, in a series of patches.
This is the second attempt. In the first attempt (r169837), a few
getSimpleVT() were hoisted too far, detected by bootstrap failures.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170104 91177308-0d34-0410-b5e6-96231b3b80d8
Accordingly, add helper funtions getSimpleValueType (in parallel to
getValueType) in SDValue, SDNode, and TargetLowering.
This is the first, in a series of patches.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169837 91177308-0d34-0410-b5e6-96231b3b80d8
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169131 91177308-0d34-0410-b5e6-96231b3b80d8
getIntPtrType support for multiple address spaces via a pointer type,
and also introduced a crasher bug in the constant folder reported in
PR14233.
These commits also contained several problems that should really be
addressed before they are re-committed. I have avoided reverting various
cleanups to the DataLayout APIs that are reasonable to have moving
forward in order to reduce the amount of churn, and minimize the number
of commits that were reverted. I've also manually updated merge
conflicts and manually arranged for the getIntPtrType function to stay
in DataLayout and to be defined in a plausible way after this revert.
Thanks to Duncan for working through this exact strategy with me, and
Nick Lewycky for tracking down the really annoying crasher this
triggered. (Test case to follow in its own commit.)
After discussing with Duncan extensively, and based on a note from
Micah, I'm going to continue to back out some more of the more
problematic patches in this series in order to ensure we go into the
LLVM 3.2 branch with a reasonable story here. I'll send a note to
llvmdev explaining what's going on and why.
Summary of reverted revisions:
r166634: Fix a compiler warning with an unused variable.
r166607: Add some cleanup to the DataLayout changes requested by
Chandler.
r166596: Revert "Back out r166591, not sure why this made it through
since I cancelled the command. Bleh, sorry about this!
r166591: Delete a directory that wasn't supposed to be checked in yet.
r166578: Add in support for getIntPtrType to get the pointer type based
on the address space.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167221 91177308-0d34-0410-b5e6-96231b3b80d8
The previous change caused fast isel to not attempt handling any calls to
builtin functions. That included things like "printf" and caused some
noticable regressions in compile time. I wanted to avoid having fast isel
keep a separate list of functions that had to be kept in sync with what the
code in SelectionDAGBuilder.cpp was handling. I've resolved that here by
moving the list into TargetLibraryInfo. This is somewhat redundant in
SelectionDAGBuilder but it will ensure that we keep things consistent.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161263 91177308-0d34-0410-b5e6-96231b3b80d8
Fast isel doesn't currently have support for translating builtin function
calls to target instructions. For embedded environments where the library
functions are not available, this is a matter of correctness and not
just optimization. Most of this patch is just arranging to make the
TargetLibraryInfo available in fast isel. <rdar://problem/12008746>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161232 91177308-0d34-0410-b5e6-96231b3b80d8