by xoring the high-bit. This fails if the source operand is a vector because we need to negate
each of the elements in the vector.
Fix rdar://12281066 PR13813.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163802 91177308-0d34-0410-b5e6-96231b3b80d8
are within the lifetime zone. Sometime legitimate usages of allocas are
hoisted outside of the lifetime zone. For example, GEPS may calculate the
address of a member of an allocated struct. This commit makes sure that
we only check (abort regions or assert) for instructions that read and write
memory using stack frames directly. Notice that by allowing legitimate
usages outside the lifetime zone we also stop checking for instructions
which use derivatives of allocas. We will catch less bugs in user code
and in the compiler itself.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163791 91177308-0d34-0410-b5e6-96231b3b80d8
We don't have enough GR64_TC registers when calling a varargs function
with 6 arguments. Since %al holds the number of vector registers used,
only %r11 is available as a scratch register.
This means that addressing modes using both base and index registers
can't be folded into TCRETURNmi64.
<rdar://problem/12282281>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163761 91177308-0d34-0410-b5e6-96231b3b80d8
Add some support for dealing with an object pointer on arguments.
Part of rdar://9797999
which now supports adding the object pointer attribute to the
subprogram as it should.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163754 91177308-0d34-0410-b5e6-96231b3b80d8
- BlockAddress has no support of BA + offset form and there is no way to
propagate that offset into machine operand;
- Add BA + offset support and a new interface 'getTargetBlockAddress' to
simplify target block address forming;
- All targets are modified to use new interface and X86 backend is enhanced to
support BA + offset addressing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163743 91177308-0d34-0410-b5e6-96231b3b80d8
nonvolatile condition register fields across calls under the SVR4 ABIs.
* With the 64-bit ABI, the save location is at a fixed offset of 8 from
the stack pointer. The frame pointer cannot be used to access this
portion of the stack frame since the distance from the frame pointer may
change with alloca calls.
* With the 32-bit ABI, the save location is just below the general
register save area, and is accessed via the frame pointer like the rest
of the save areas. This is an optional slot, so it must only be created
if any of CR2, CR3, and CR4 were modified.
* For both ABIs, save/restore logic is generated only if one of the
nonvolatile CR fields were modified.
I also took this opportunity to clean up an extra FIXME in
PPCFrameLowering.h. Save area offsets for 32-bit GPRs are meaningless
for the 64-bit ABI, so I removed them for correctness and efficiency.
Fixes PR13708 and partially also PR13623. It lets us enable exception handling
on PPC64.
Patch by William J. Schmidt!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163713 91177308-0d34-0410-b5e6-96231b3b80d8
SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget);
should not be used when Val is not a simple constant (as the comment in
SelectionDAG.h indicates). This patch avoids using this function
when folding an unknown constant through a bitcast, where it cannot be
guaranteed that Val will be a simple constant.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163703 91177308-0d34-0410-b5e6-96231b3b80d8
The input program may contain intructions which are not inside lifetime
markers. This can happen due to a bug in the compiler or due to a bug in
user code (for example, returning a reference to a local variable).
This commit adds checks that all of the instructions in the function and
invalidates lifetime ranges which do not contain all of the instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163678 91177308-0d34-0410-b5e6-96231b3b80d8
a pair of switch/branch where both depend on the value of the same variable and
the default case of the first switch/branch goes to the second switch/branch.
Code clean up and fixed a few issues:
1> handling the case where some cases of the 2nd switch are invalidated
2> correctly calculate the weight for the 2nd switch when it is a conditional eq
Testing case is modified from Alastair's original patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163635 91177308-0d34-0410-b5e6-96231b3b80d8
The ARM backend can eliminate cmp instructions by reusing flags from a
nearby sub instruction with similar arguments.
Don't do that if the sub is predicated - the flags are not written
unconditionally.
<rdar://problem/12263428>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163535 91177308-0d34-0410-b5e6-96231b3b80d8
- If a boolean value is generated from CMOV and tested as boolean value,
simplify the use of test result by referencing the original condition.
RDRAND intrinisc is one of such cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163516 91177308-0d34-0410-b5e6-96231b3b80d8
For some reason .lcomm uses byte alignment and .comm log2 alignment so we can't
use the same setting for both. Fix this by reintroducing the LCOMM enum.
I verified this against mingw's gcc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163420 91177308-0d34-0410-b5e6-96231b3b80d8
- Darwin lied about not supporting .lcomm and turned it into zerofill in the
asm parser. Push the zerofill-conversion down into macho-specific code.
- This makes the tri-state LCOMMType enum superfluous, there are no targets
without .lcomm.
- Do proper error reporting when trying to use .lcomm with alignment on a target
that doesn't support it.
- .comm and .lcomm alignment was parsed in bytes on COFF, should be power of 2.
- Fixes PR13755 (.lcomm crashes on ELF).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163395 91177308-0d34-0410-b5e6-96231b3b80d8
gas accepts this and it seems to be common enough to be worth supporting. This
doesn't affect the parsing of reg operands outside of .cfi directives.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163390 91177308-0d34-0410-b5e6-96231b3b80d8
The assembler can alias one instruction into another based
on the operands. For example the jump instruction "J" takes
and immediate operand, but if the operand is a register the
assembler will change it into a jump register "JR" instruction.
These changes are in the instruction td file.
Test cases included
Contributer: Vladimir Medic
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163368 91177308-0d34-0410-b5e6-96231b3b80d8
Actually these are just stubs for parsing the directives.
Semantic support will come later.
Test cases included
Contributer: Vladimir Medic
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163364 91177308-0d34-0410-b5e6-96231b3b80d8
- This patch is inspired by the failure of the following code snippet
which is used to convert enumerable values into encoding bits to
improve the readability of td files.
class S<int s> {
bits<2> V = !if(!eq(s, 8), {0, 0},
!if(!eq(s, 16), {0, 1},
!if(!eq(s, 32), {1, 0},
!if(!eq(s, 64), {1, 1}, {?, ?}))));
}
Later, PR8330 is found to report not exactly the same bug relevant
issue to bit/bits values.
- Instead of resolving bit/bits values separately through
resolveBitReference(), this patch adds getBit() for all Inits and
resolves bit value by resolving plus getting the specified bit. This
unifies the resolving of bit with other values and removes redundant
logic for resolving bit only. In addition,
BitsInit::resolveReferences() is optimized to take advantage of this
origanization by resolving VarBitInit's variable reference first and
then getting bits from it.
- The type interference in '!if' operator is revised to support possible
combinations of int and bits/bit in MHS and RHS.
- As there may be illegal assignments from integer value to bit, says
assign 2 to a bit, but we only check this during instantiation in some
cases, e.g.
bit V = !if(!eq(x, 17), 0, 2);
Verbose diagnostic message is generated when invalid value is
resolveed to help locating the error.
- PR8330 is fixed as well.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163360 91177308-0d34-0410-b5e6-96231b3b80d8
The RegisterCoalescer understands overlapping live ranges where one
register is defined as a copy of the other. With this change, register
allocators using LiveRegMatrix can do the same, at least for copies
between physical and virtual registers.
When a physreg is defined by a copy from a virtreg, allow those live
ranges to overlap:
%CL<def> = COPY %vreg11:sub_8bit; GR32_ABCD:%vreg11
%vreg13<def,tied1> = SAR32rCL %vreg13<tied0>, %CL<imp-use,kill>
We can assign %vreg11 to %ECX, overlapping the live range of %CL.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163336 91177308-0d34-0410-b5e6-96231b3b80d8