Deserializer.
There were issues with Visual C++ barfing when instantiating
SerializeTrait<T> when "T" was an abstract class AND
SerializeTrait<T>::ReadVal was *never* called:
template <typename T>
struct SerializeTrait {
<SNIP>
static inline T ReadVal(Deserializer& D) { T::ReadVal(D); }
<SNIP>
};
Visual C++ would complain about "T" being an abstract class, even
though ReadVal was never instantiated (although one of the other
member functions were).
Removing this from the trait is not a big deal. It was used hardly
ever, and users who want "read-by-value" deserialization can simply
call the appropriate methods directly instead of relying on
trait-based-dispatch. The trait dispatch for
serialization/deserialization is simply sugar in many cases (like this
one).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@43624 91177308-0d34-0410-b5e6-96231b3b80d8
The meaning of getTypeSize was not clear - clarifying it is important
now that we have x86 long double and arbitrary precision integers.
The issue with long double is that it requires 80 bits, and this is
not a multiple of its alignment. This gives a primitive type for
which getTypeSize differed from getABITypeSize. For arbitrary precision
integers it is even worse: there is the minimum number of bits needed to
hold the type (eg: 36 for an i36), the maximum number of bits that will
be overwriten when storing the type (40 bits for i36) and the ABI size
(i.e. the storage size rounded up to a multiple of the alignment; 64 bits
for i36).
This patch removes getTypeSize (not really - it is still there but
deprecated to allow for a gradual transition). Instead there is:
(1) getTypeSizeInBits - a number of bits that suffices to hold all
values of the type. For a primitive type, this is the minimum number
of bits. For an i36 this is 36 bits. For x86 long double it is 80.
This corresponds to gcc's TYPE_PRECISION.
(2) getTypeStoreSizeInBits - the maximum number of bits that is
written when storing the type (or read when reading it). For an
i36 this is 40 bits, for an x86 long double it is 80 bits. This
is the size alias analysis is interested in (getTypeStoreSize
returns the number of bytes). There doesn't seem to be anything
corresponding to this in gcc.
(3) getABITypeSizeInBits - this is getTypeStoreSizeInBits rounded
up to a multiple of the alignment. For an i36 this is 64, for an
x86 long double this is 96 or 128 depending on the OS. This is the
spacing between consecutive elements when you form an array out of
this type (getABITypeSize returns the number of bytes). This is
TYPE_SIZE in gcc.
Since successive elements in a SequentialType (arrays, pointers
and vectors) need to be aligned, the spacing between them will be
given by getABITypeSize. This means that the size of an array
is the length times the getABITypeSize. It also means that GEP
computations need to use getABITypeSize when computing offsets.
Furthermore, if an alloca allocates several elements at once then
these too need to be aligned, so the size of the alloca has to be
the number of elements multiplied by getABITypeSize. Logically
speaking this doesn't have to be the case when allocating just
one element, but it is simpler to also use getABITypeSize in this
case. So alloca's and mallocs should use getABITypeSize. Finally,
since gcc's only notion of size is that given by getABITypeSize, if
you want to output assembler etc the same as gcc then getABITypeSize
is the size you want.
Since a store will overwrite no more than getTypeStoreSize bytes,
and a read will read no more than that many bytes, this is the
notion of size appropriate for alias analysis calculations.
In this patch I have corrected all type size uses except some of
those in ScalarReplAggregates, lib/Codegen, lib/Target (the hard
cases). I will get around to auditing these too at some point,
but I could do with some help.
Finally, I made one change which I think wise but others might
consider pointless and suboptimal: in an unpacked struct the
amount of space allocated for a field is now given by the ABI
size rather than getTypeStoreSize. I did this because every
other place that reserves memory for a type (eg: alloca) now
uses getABITypeSize, and I didn't want to make an exception
for unpacked structs, i.e. I did it to make things more uniform.
This only effects structs containing long doubles and arbitrary
precision integers. If someone wants to pack these types more
tightly they can always use a packed struct.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@43620 91177308-0d34-0410-b5e6-96231b3b80d8
flag in the **key** of the backpatch map, as opposed to the mapped
value which contains either the final pointer, or a pointer to a chain
of pointers that need to be backpatched. The bit flag was moved to
the key because we were erroneously assuming that the backpatched
pointers would be at an alignment of >= 2 bytes, which obviously
doesn't work for character strings. Now we just steal the bit from the key.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@43595 91177308-0d34-0410-b5e6-96231b3b80d8
Added method FindAndConstruct() to DenseMap, which does the same thing as
operator[], except that it refers value_type& (a reference to both the
key and mapped data pair). This method is useful for clients that wish
to access the stored key value, as opposed to the key used to do the
actual lookup (these need not always be the same).
Redefined operator[] to use FindAndConstruct() (same logic).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@43594 91177308-0d34-0410-b5e6-96231b3b80d8
just like pointers, except that they cannot be backpatched. This
means that references are essentially non-owning pointers where the
referred object must be deserialized prior to the reference being
deserialized. Because of the nature of references, this ordering of
objects is always possible.
Fixed a bug in backpatching code (returning the backpatched pointer
would accidentally include a bit flag).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@43570 91177308-0d34-0410-b5e6-96231b3b80d8
transformation. Previously, it's restricted by ensuring the number of load uses
is one. Now the restriction is loosened up by allowing setcc uses to be
"extended" (e.g. setcc x, c, eq -> setcc sext(x), sext(c), eq).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@43465 91177308-0d34-0410-b5e6-96231b3b80d8
eager backpatching instead of waithing until all objects have been
deserialized. This allows us to reduce the memory footprint needed
for backpatching.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@43422 91177308-0d34-0410-b5e6-96231b3b80d8
of offset and the alignment of ptr if these are both powers of
2. While the ptr alignment is guaranteed to be a power of 2,
there is no reason to think that offset is. For example, if
offset is 12 (the size of a long double on x86-32 linux) and
the alignment of ptr is 8, then the alignment of ptr+offset
will in general be 4, not 8. Introduce a function MinAlign,
lifted from gcc, for computing the minimum guaranteed alignment.
I've tried to fix up everywhere under lib/CodeGen/SelectionDAG/.
I also changed some places that weren't wrong (because both values
were a power of 2), as a defensive change against people copying
and pasting the code.
Hopefully someone who cares about alignment will review the rest
of LLVM and fix up the remaining places. Since I'm on x86 I'm
not very motivated to do this myself...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@43421 91177308-0d34-0410-b5e6-96231b3b80d8
calling member functions of the target type to perform type-specific
serialization.
Added version of ReadPtr that allows passing references to uintptr_t
(useful for smart pointers).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@43396 91177308-0d34-0410-b5e6-96231b3b80d8
Turn a store folding instruction into a load folding instruction. e.g.
xorl %edi, %eax
movl %eax, -32(%ebp)
movl -36(%ebp), %eax
orl %eax, -32(%ebp)
=>
xorl %edi, %eax
orl -36(%ebp), %eax
mov %eax, -32(%ebp)
This enables the unfolding optimization for a subsequent instruction which will
also eliminate the newly introduced store instruction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@43192 91177308-0d34-0410-b5e6-96231b3b80d8