//===-- InstSelectSimple.cpp - A simple instruction selector for SparcV8 --===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines a simple peephole instruction selector for the V8 target // //===----------------------------------------------------------------------===// #include "SparcV8.h" #include "SparcV8InstrInfo.h" #include "Support/Debug.h" #include "llvm/Instructions.h" #include "llvm/Pass.h" #include "llvm/Constants.h" #include "llvm/CodeGen/IntrinsicLowering.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/SSARegMap.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Support/GetElementPtrTypeIterator.h" #include "llvm/Support/InstVisitor.h" #include "llvm/Support/CFG.h" using namespace llvm; namespace { struct V8ISel : public FunctionPass, public InstVisitor { TargetMachine &TM; MachineFunction *F; // The function we are compiling into MachineBasicBlock *BB; // The current MBB we are compiling std::map RegMap; // Mapping between Val's and SSA Regs // MBBMap - Mapping between LLVM BB -> Machine BB std::map MBBMap; V8ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {} /// runOnFunction - Top level implementation of instruction selection for /// the entire function. /// bool runOnFunction(Function &Fn); virtual const char *getPassName() const { return "SparcV8 Simple Instruction Selection"; } /// emitGEPOperation - Common code shared between visitGetElementPtrInst and /// constant expression GEP support. /// void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP, Value *Src, User::op_iterator IdxBegin, User::op_iterator IdxEnd, unsigned TargetReg); /// emitCastOperation - Common code shared between visitCastInst and /// constant expression cast support. /// void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP, Value *Src, const Type *DestTy, unsigned TargetReg); /// visitBasicBlock - This method is called when we are visiting a new basic /// block. This simply creates a new MachineBasicBlock to emit code into /// and adds it to the current MachineFunction. Subsequent visit* for /// instructions will be invoked for all instructions in the basic block. /// void visitBasicBlock(BasicBlock &LLVM_BB) { BB = MBBMap[&LLVM_BB]; } void visitBinaryOperator(Instruction &I); void visitShiftInst (ShiftInst &SI) { visitBinaryOperator (SI); } void visitSetCondInst(Instruction &I); void visitCallInst(CallInst &I); void visitReturnInst(ReturnInst &I); void visitBranchInst(BranchInst &I); void visitCastInst(CastInst &I); void visitLoadInst(LoadInst &I); void visitStoreInst(StoreInst &I); void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass void visitGetElementPtrInst(GetElementPtrInst &I); void visitAllocaInst(AllocaInst &I); void visitInstruction(Instruction &I) { std::cerr << "Unhandled instruction: " << I; abort(); } /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the /// function, lowering any calls to unknown intrinsic functions into the /// equivalent LLVM code. void LowerUnknownIntrinsicFunctionCalls(Function &F); void visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI); void LoadArgumentsToVirtualRegs(Function *F); /// SelectPHINodes - Insert machine code to generate phis. This is tricky /// because we have to generate our sources into the source basic blocks, /// not the current one. /// void SelectPHINodes(); /// copyConstantToRegister - Output the instructions required to put the /// specified constant into the specified register. /// void copyConstantToRegister(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, Constant *C, unsigned R); /// makeAnotherReg - This method returns the next register number we haven't /// yet used. /// /// Long values are handled somewhat specially. They are always allocated /// as pairs of 32 bit integer values. The register number returned is the /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits /// of the long value. /// unsigned makeAnotherReg(const Type *Ty) { assert(dynamic_cast(TM.getRegisterInfo()) && "Current target doesn't have SparcV8 reg info??"); const SparcV8RegisterInfo *MRI = static_cast(TM.getRegisterInfo()); if (Ty == Type::LongTy || Ty == Type::ULongTy) { const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy); // Create the lower part F->getSSARegMap()->createVirtualRegister(RC); // Create the upper part. return F->getSSARegMap()->createVirtualRegister(RC)-1; } // Add the mapping of regnumber => reg class to MachineFunction const TargetRegisterClass *RC = MRI->getRegClassForType(Ty); return F->getSSARegMap()->createVirtualRegister(RC); } unsigned getReg(Value &V) { return getReg (&V); } // allow refs. unsigned getReg(Value *V) { // Just append to the end of the current bb. MachineBasicBlock::iterator It = BB->end(); return getReg(V, BB, It); } unsigned getReg(Value *V, MachineBasicBlock *MBB, MachineBasicBlock::iterator IPt) { unsigned &Reg = RegMap[V]; if (Reg == 0) { Reg = makeAnotherReg(V->getType()); RegMap[V] = Reg; } // If this operand is a constant, emit the code to copy the constant into // the register here... // if (Constant *C = dyn_cast(V)) { copyConstantToRegister(MBB, IPt, C, Reg); RegMap.erase(V); // Assign a new name to this constant if ref'd again } else if (GlobalValue *GV = dyn_cast(V)) { // Move the address of the global into the register unsigned TmpReg = makeAnotherReg(V->getType()); BuildMI (*MBB, IPt, V8::SETHIi, 1, TmpReg).addGlobalAddress (GV); BuildMI (*MBB, IPt, V8::ORri, 2, Reg).addReg (TmpReg) .addGlobalAddress (GV); RegMap.erase(V); // Assign a new name to this address if ref'd again } return Reg; } }; } FunctionPass *llvm::createSparcV8SimpleInstructionSelector(TargetMachine &TM) { return new V8ISel(TM); } enum TypeClass { cByte, cShort, cInt, cLong, cFloat, cDouble }; static TypeClass getClass (const Type *T) { switch (T->getTypeID()) { case Type::UByteTyID: case Type::SByteTyID: return cByte; case Type::UShortTyID: case Type::ShortTyID: return cShort; case Type::PointerTyID: case Type::UIntTyID: case Type::IntTyID: return cInt; case Type::ULongTyID: case Type::LongTyID: return cLong; case Type::FloatTyID: return cFloat; case Type::DoubleTyID: return cDouble; default: assert (0 && "Type of unknown class passed to getClass?"); return cByte; } } static TypeClass getClassB(const Type *T) { if (T == Type::BoolTy) return cByte; return getClass(T); } /// copyConstantToRegister - Output the instructions required to put the /// specified constant into the specified register. /// void V8ISel::copyConstantToRegister(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, Constant *C, unsigned R) { if (ConstantExpr *CE = dyn_cast(C)) { switch (CE->getOpcode()) { case Instruction::GetElementPtr: emitGEPOperation(MBB, IP, CE->getOperand(0), CE->op_begin()+1, CE->op_end(), R); return; case Instruction::Cast: emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R); return; default: std::cerr << "Copying this constant expr not yet handled: " << *CE; abort(); } } if (C->getType()->isIntegral ()) { uint64_t Val; unsigned Class = getClassB (C->getType ()); if (Class == cLong) { unsigned TmpReg = makeAnotherReg (Type::IntTy); unsigned TmpReg2 = makeAnotherReg (Type::IntTy); // Copy the value into the register pair. // R = top(more-significant) half, R+1 = bottom(less-significant) half uint64_t Val = cast(C)->getRawValue(); unsigned topHalf = Val & 0xffffffffU; unsigned bottomHalf = Val >> 32; unsigned HH = topHalf >> 10; unsigned HM = topHalf & 0x03ff; unsigned LM = bottomHalf >> 10; unsigned LO = bottomHalf & 0x03ff; BuildMI (*MBB, IP, V8::SETHIi, 1, TmpReg).addImm(HH); BuildMI (*MBB, IP, V8::ORri, 2, R).addReg (TmpReg) .addImm (HM); BuildMI (*MBB, IP, V8::SETHIi, 1, TmpReg2).addImm(LM); BuildMI (*MBB, IP, V8::ORri, 2, R+1).addReg (TmpReg2) .addImm (LO); return; } assert(Class <= cInt && "Type not handled yet!"); if (C->getType() == Type::BoolTy) { Val = (C == ConstantBool::True); } else { ConstantInt *CI = dyn_cast (C); Val = CI->getRawValue (); } switch (Class) { case cByte: BuildMI (*MBB, IP, V8::ORri, 2, R).addReg (V8::G0).addImm((uint8_t)Val); return; case cShort: { unsigned TmpReg = makeAnotherReg (C->getType ()); BuildMI (*MBB, IP, V8::SETHIi, 1, TmpReg) .addImm (((uint16_t) Val) >> 10); BuildMI (*MBB, IP, V8::ORri, 2, R).addReg (TmpReg) .addImm (((uint16_t) Val) & 0x03ff); return; } case cInt: { unsigned TmpReg = makeAnotherReg (C->getType ()); BuildMI (*MBB, IP, V8::SETHIi, 1, TmpReg).addImm(((uint32_t)Val) >> 10); BuildMI (*MBB, IP, V8::ORri, 2, R).addReg (TmpReg) .addImm (((uint32_t) Val) & 0x03ff); return; } default: std::cerr << "Offending constant: " << *C << "\n"; assert (0 && "Can't copy this kind of constant into register yet"); return; } } else if (ConstantFP *CFP = dyn_cast(C)) { // We need to spill the constant to memory... MachineConstantPool *CP = F->getConstantPool(); unsigned CPI = CP->getConstantPoolIndex(CFP); const Type *Ty = CFP->getType(); assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!"); unsigned LoadOpcode = Ty == Type::FloatTy ? V8::LDFmr : V8::LDDFmr; BuildMI (*MBB, IP, LoadOpcode, 2, R).addConstantPoolIndex (CPI).addSImm (0); } else if (isa(C)) { // Copy zero (null pointer) to the register. BuildMI (*MBB, IP, V8::ORri, 2, R).addReg (V8::G0).addImm (0); } else if (ConstantPointerRef *CPR = dyn_cast(C)) { // Copy it with a SETHI/OR pair; the JIT + asmwriter should recognize // that SETHI %reg,global == SETHI %reg,%hi(global) and // OR %reg,global,%reg == OR %reg,%lo(global),%reg. unsigned TmpReg = makeAnotherReg (C->getType ()); BuildMI (*MBB, IP, V8::SETHIi, 1, TmpReg).addGlobalAddress (CPR->getValue()); BuildMI (*MBB, IP, V8::ORri, 2, R).addReg (TmpReg) .addGlobalAddress (CPR->getValue ()); } else { std::cerr << "Offending constant: " << *C << "\n"; assert (0 && "Can't copy this kind of constant into register yet"); } } void V8ISel::LoadArgumentsToVirtualRegs (Function *F) { unsigned ArgOffset = 0; static const unsigned IncomingArgRegs[] = { V8::I0, V8::I1, V8::I2, V8::I3, V8::I4, V8::I5 }; assert (F->asize () < 7 && "Can't handle loading excess call args off the stack yet"); for (Function::aiterator I = F->abegin(), E = F->aend(); I != E; ++I) { unsigned Reg = getReg(*I); switch (getClassB(I->getType())) { case cByte: case cShort: case cInt: BuildMI(BB, V8::ORrr, 2, Reg).addReg (V8::G0) .addReg (IncomingArgRegs[ArgOffset]); break; default: assert (0 && "Only <=32-bit, integral arguments currently handled"); return; } ++ArgOffset; } } void V8ISel::SelectPHINodes() { const TargetInstrInfo &TII = *TM.getInstrInfo(); const Function &LF = *F->getFunction(); // The LLVM function... for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) { const BasicBlock *BB = I; MachineBasicBlock &MBB = *MBBMap[I]; // Loop over all of the PHI nodes in the LLVM basic block... MachineBasicBlock::iterator PHIInsertPoint = MBB.begin(); for (BasicBlock::const_iterator I = BB->begin(); PHINode *PN = const_cast(dyn_cast(I)); ++I) { // Create a new machine instr PHI node, and insert it. unsigned PHIReg = getReg(*PN); MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint, V8::PHI, PN->getNumOperands(), PHIReg); MachineInstr *LongPhiMI = 0; if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy) LongPhiMI = BuildMI(MBB, PHIInsertPoint, V8::PHI, PN->getNumOperands(), PHIReg+1); // PHIValues - Map of blocks to incoming virtual registers. We use this // so that we only initialize one incoming value for a particular block, // even if the block has multiple entries in the PHI node. // std::map PHIValues; for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { MachineBasicBlock *PredMBB = 0; for (MachineBasicBlock::pred_iterator PI = MBB.pred_begin (), PE = MBB.pred_end (); PI != PE; ++PI) if (PN->getIncomingBlock(i) == (*PI)->getBasicBlock()) { PredMBB = *PI; break; } assert (PredMBB && "Couldn't find incoming machine-cfg edge for phi"); unsigned ValReg; std::map::iterator EntryIt = PHIValues.lower_bound(PredMBB); if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) { // We already inserted an initialization of the register for this // predecessor. Recycle it. ValReg = EntryIt->second; } else { // Get the incoming value into a virtual register. // Value *Val = PN->getIncomingValue(i); // If this is a constant or GlobalValue, we may have to insert code // into the basic block to compute it into a virtual register. if ((isa(Val) && !isa(Val)) || isa(Val)) { // Simple constants get emitted at the end of the basic block, // before any terminator instructions. We "know" that the code to // move a constant into a register will never clobber any flags. ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator()); } else { // Because we don't want to clobber any values which might be in // physical registers with the computation of this constant (which // might be arbitrarily complex if it is a constant expression), // just insert the computation at the top of the basic block. MachineBasicBlock::iterator PI = PredMBB->begin(); // Skip over any PHI nodes though! while (PI != PredMBB->end() && PI->getOpcode() == V8::PHI) ++PI; ValReg = getReg(Val, PredMBB, PI); } // Remember that we inserted a value for this PHI for this predecessor PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg)); } PhiMI->addRegOperand(ValReg); PhiMI->addMachineBasicBlockOperand(PredMBB); if (LongPhiMI) { LongPhiMI->addRegOperand(ValReg+1); LongPhiMI->addMachineBasicBlockOperand(PredMBB); } } // Now that we emitted all of the incoming values for the PHI node, make // sure to reposition the InsertPoint after the PHI that we just added. // This is needed because we might have inserted a constant into this // block, right after the PHI's which is before the old insert point! PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI; ++PHIInsertPoint; } } } bool V8ISel::runOnFunction(Function &Fn) { // First pass over the function, lower any unknown intrinsic functions // with the IntrinsicLowering class. LowerUnknownIntrinsicFunctionCalls(Fn); F = &MachineFunction::construct(&Fn, TM); // Create all of the machine basic blocks for the function... for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I)); BB = &F->front(); // Set up a frame object for the return address. This is used by the // llvm.returnaddress & llvm.frameaddress intrinisics. //ReturnAddressIndex = F->getFrameInfo()->CreateFixedObject(4, -4); // Copy incoming arguments off of the stack and out of fixed registers. LoadArgumentsToVirtualRegs(&Fn); // Instruction select everything except PHI nodes visit(Fn); // Select the PHI nodes SelectPHINodes(); RegMap.clear(); MBBMap.clear(); F = 0; // We always build a machine code representation for the function return true; } void V8ISel::visitCastInst(CastInst &I) { Value *Op = I.getOperand(0); unsigned DestReg = getReg(I); MachineBasicBlock::iterator MI = BB->end(); emitCastOperation(BB, MI, Op, I.getType(), DestReg); } /// emitCastOperation - Common code shared between visitCastInst and constant /// expression cast support. /// void V8ISel::emitCastOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP, Value *Src, const Type *DestTy, unsigned DestReg) { const Type *SrcTy = Src->getType(); unsigned SrcClass = getClassB(SrcTy); unsigned DestClass = getClassB(DestTy); unsigned SrcReg = getReg(Src, BB, IP); const Type *oldTy = SrcTy; const Type *newTy = DestTy; unsigned oldTyClass = SrcClass; unsigned newTyClass = DestClass; if (oldTyClass < cLong && newTyClass < cLong) { if (oldTyClass >= newTyClass) { // Emit a reg->reg copy to do a equal-size or narrowing cast, // and do sign/zero extension (necessary if we change signedness). unsigned TmpReg1 = makeAnotherReg (newTy); unsigned TmpReg2 = makeAnotherReg (newTy); BuildMI (*BB, IP, V8::ORrr, 2, TmpReg1).addReg (V8::G0).addReg (SrcReg); unsigned shiftWidth = 32 - (8 * TM.getTargetData ().getTypeSize (newTy)); BuildMI (*BB, IP, V8::SLLri, 2, TmpReg2).addZImm (shiftWidth).addReg(TmpReg1); if (newTy->isSigned ()) { // sign-extend with SRA BuildMI(*BB, IP, V8::SRAri, 2, DestReg).addZImm (shiftWidth).addReg(TmpReg2); } else { // zero-extend with SRL BuildMI(*BB, IP, V8::SRLri, 2, DestReg).addZImm (shiftWidth).addReg(TmpReg2); } } else { unsigned TmpReg1 = makeAnotherReg (oldTy); unsigned TmpReg2 = makeAnotherReg (newTy); unsigned TmpReg3 = makeAnotherReg (newTy); // Widening integer cast. Make sure it's fully sign/zero-extended // wrt the input type, then make sure it's fully sign/zero-extended wrt // the output type. Kind of stupid, but simple... unsigned shiftWidth = 32 - (8 * TM.getTargetData ().getTypeSize (oldTy)); BuildMI (*BB, IP, V8::SLLri, 2, TmpReg1).addZImm (shiftWidth).addReg(SrcReg); if (oldTy->isSigned ()) { // sign-extend with SRA BuildMI(*BB, IP, V8::SRAri, 2, TmpReg2).addZImm (shiftWidth).addReg(TmpReg1); } else { // zero-extend with SRL BuildMI(*BB, IP, V8::SRLri, 2, TmpReg2).addZImm (shiftWidth).addReg(TmpReg1); } shiftWidth = 32 - (8 * TM.getTargetData ().getTypeSize (newTy)); BuildMI (*BB, IP, V8::SLLri, 2, TmpReg3).addZImm (shiftWidth).addReg(TmpReg2); if (newTy->isSigned ()) { // sign-extend with SRA BuildMI(*BB, IP, V8::SRAri, 2, DestReg).addZImm (shiftWidth).addReg(TmpReg3); } else { // zero-extend with SRL BuildMI(*BB, IP, V8::SRLri, 2, DestReg).addZImm (shiftWidth).addReg(TmpReg3); } } } else { std::cerr << "Casts w/ long, fp, double still unsupported: SrcTy = " << *SrcTy << ", DestTy = " << *DestTy << "\n"; abort (); } } void V8ISel::visitLoadInst(LoadInst &I) { unsigned DestReg = getReg (I); unsigned PtrReg = getReg (I.getOperand (0)); switch (getClassB (I.getType ())) { case cByte: if (I.getType ()->isSigned ()) BuildMI (BB, V8::LDSBmr, 1, DestReg).addReg (PtrReg).addSImm(0); else BuildMI (BB, V8::LDUBmr, 1, DestReg).addReg (PtrReg).addSImm(0); return; case cShort: if (I.getType ()->isSigned ()) BuildMI (BB, V8::LDSHmr, 1, DestReg).addReg (PtrReg).addSImm(0); else BuildMI (BB, V8::LDUHmr, 1, DestReg).addReg (PtrReg).addSImm(0); return; case cInt: BuildMI (BB, V8::LDmr, 1, DestReg).addReg (PtrReg).addSImm(0); return; case cLong: BuildMI (BB, V8::LDDmr, 1, DestReg).addReg (PtrReg).addSImm(0); return; default: std::cerr << "Load instruction not handled: " << I; abort (); return; } } void V8ISel::visitStoreInst(StoreInst &I) { Value *SrcVal = I.getOperand (0); unsigned SrcReg = getReg (SrcVal); unsigned PtrReg = getReg (I.getOperand (1)); switch (getClassB (SrcVal->getType ())) { case cByte: BuildMI (BB, V8::STBrm, 3).addReg (PtrReg).addSImm (0).addReg (SrcReg); return; case cShort: BuildMI (BB, V8::STHrm, 3).addReg (PtrReg).addSImm (0).addReg (SrcReg); return; case cInt: BuildMI (BB, V8::STrm, 3).addReg (PtrReg).addSImm (0).addReg (SrcReg); return; case cLong: BuildMI (BB, V8::STDrm, 3).addReg (PtrReg).addSImm (0).addReg (SrcReg); return; default: std::cerr << "Store instruction not handled: " << I; abort (); return; } } void V8ISel::visitCallInst(CallInst &I) { MachineInstr *TheCall; // Is it an intrinsic function call? if (Function *F = I.getCalledFunction()) { if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) { visitIntrinsicCall(ID, I); // Special intrinsics are not handled here return; } } // Deal with args assert (I.getNumOperands () < 8 && "Can't handle pushing excess call args on the stack yet"); static const unsigned OutgoingArgRegs[] = { V8::O0, V8::O1, V8::O2, V8::O3, V8::O4, V8::O5 }; for (unsigned i = 1; i < 7; ++i) if (i < I.getNumOperands ()) { unsigned ArgReg = getReg (I.getOperand (i)); // Schlep it over into the incoming arg register BuildMI (BB, V8::ORrr, 2, OutgoingArgRegs[i - 1]).addReg (V8::G0) .addReg (ArgReg); } // Emit call instruction if (Function *F = I.getCalledFunction ()) { BuildMI (BB, V8::CALL, 1).addGlobalAddress (F, true); } else { // Emit an indirect call... unsigned Reg = getReg (I.getCalledValue ()); BuildMI (BB, V8::JMPLrr, 3, V8::O7).addReg (Reg).addReg (V8::G0); } // Deal w/ return value: schlep it over into the destination register if (I.getType () == Type::VoidTy) return; unsigned DestReg = getReg (I); switch (getClass (I.getType ())) { case cByte: case cShort: case cInt: BuildMI (BB, V8::ORrr, 2, DestReg).addReg(V8::G0).addReg(V8::O0); break; case cFloat: BuildMI (BB, V8::FMOVS, 2, DestReg).addReg(V8::F0); break; default: std::cerr << "Return type of call instruction not handled: " << I; abort (); } } void V8ISel::visitReturnInst(ReturnInst &I) { if (I.getNumOperands () == 1) { unsigned RetValReg = getReg (I.getOperand (0)); switch (getClass (I.getOperand (0)->getType ())) { case cByte: case cShort: case cInt: // Schlep it over into i0 (where it will become o0 after restore). BuildMI (BB, V8::ORrr, 2, V8::I0).addReg(V8::G0).addReg(RetValReg); break; default: std::cerr << "Return instruction of this type not handled: " << I; abort (); } } // Just emit a 'retl' instruction to return. BuildMI(BB, V8::RETL, 0); return; } static inline BasicBlock *getBlockAfter(BasicBlock *BB) { Function::iterator I = BB; ++I; // Get iterator to next block return I != BB->getParent()->end() ? &*I : 0; } /// visitBranchInst - Handles conditional and unconditional branches. /// void V8ISel::visitBranchInst(BranchInst &I) { BasicBlock *takenSucc = I.getSuccessor (0); MachineBasicBlock *takenSuccMBB = MBBMap[takenSucc]; BB->addSuccessor (takenSuccMBB); if (I.isConditional()) { // conditional branch BasicBlock *notTakenSucc = I.getSuccessor (1); MachineBasicBlock *notTakenSuccMBB = MBBMap[notTakenSucc]; BB->addSuccessor (notTakenSuccMBB); // CondReg=(); // If (CondReg==0) goto notTakenSuccMBB; unsigned CondReg = getReg (I.getCondition ()); BuildMI (BB, V8::CMPri, 2).addSImm (0).addReg (CondReg); BuildMI (BB, V8::BE, 1).addMBB (notTakenSuccMBB); } // goto takenSuccMBB; BuildMI (BB, V8::BA, 1).addMBB (takenSuccMBB); } /// emitGEPOperation - Common code shared between visitGetElementPtrInst and /// constant expression GEP support. /// void V8ISel::emitGEPOperation (MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, Value *Src, User::op_iterator IdxBegin, User::op_iterator IdxEnd, unsigned TargetReg) { const TargetData &TD = TM.getTargetData (); const Type *Ty = Src->getType (); unsigned basePtrReg = getReg (Src); // GEPs have zero or more indices; we must perform a struct access // or array access for each one. for (GetElementPtrInst::op_iterator oi = IdxBegin, oe = IdxEnd; oi != oe; ++oi) { Value *idx = *oi; unsigned nextBasePtrReg = makeAnotherReg (Type::UIntTy); if (const StructType *StTy = dyn_cast (Ty)) { // It's a struct access. idx is the index into the structure, // which names the field. Use the TargetData structure to // pick out what the layout of the structure is in memory. // Use the (constant) structure index's value to find the // right byte offset from the StructLayout class's list of // structure member offsets. unsigned fieldIndex = cast (idx)->getValue (); unsigned memberOffset = TD.getStructLayout (StTy)->MemberOffsets[fieldIndex]; // Emit an ADD to add memberOffset to the basePtr. BuildMI (*MBB, IP, V8::ADDri, 2, nextBasePtrReg).addReg (basePtrReg).addZImm (memberOffset); // The next type is the member of the structure selected by the // index. Ty = StTy->getElementType (fieldIndex); } else if (const SequentialType *SqTy = dyn_cast (Ty)) { // It's an array or pointer access: [ArraySize x ElementType]. // We want to add basePtrReg to (idxReg * sizeof ElementType). First, we // must find the size of the pointed-to type (Not coincidentally, the next // type is the type of the elements in the array). Ty = SqTy->getElementType (); unsigned elementSize = TD.getTypeSize (Ty); unsigned idxReg = getReg (idx, MBB, IP); unsigned OffsetReg = makeAnotherReg (Type::IntTy); unsigned elementSizeReg = makeAnotherReg (Type::UIntTy); BuildMI (*MBB, IP, V8::ORri, 2, elementSizeReg).addZImm (elementSize).addReg (V8::G0); // Emit a SMUL to multiply the register holding the index by // elementSize, putting the result in OffsetReg. BuildMI (*MBB, IP, V8::SMULrr, 2, OffsetReg).addReg (elementSizeReg).addReg (idxReg); // Emit an ADD to add OffsetReg to the basePtr. BuildMI (*MBB, IP, V8::ADDrr, 2, nextBasePtrReg).addReg (basePtrReg).addReg (OffsetReg); } basePtrReg = nextBasePtrReg; } // After we have processed all the indices, the result is left in // basePtrReg. Move it to the register where we were expected to // put the answer. BuildMI (BB, V8::ORrr, 1, TargetReg).addReg (V8::G0).addReg (basePtrReg); } void V8ISel::visitGetElementPtrInst (GetElementPtrInst &I) { unsigned outputReg = getReg (I); emitGEPOperation (BB, BB->end (), I.getOperand (0), I.op_begin ()+1, I.op_end (), outputReg); } void V8ISel::visitBinaryOperator (Instruction &I) { unsigned DestReg = getReg (I); unsigned Op0Reg = getReg (I.getOperand (0)); unsigned Op1Reg = getReg (I.getOperand (1)); unsigned ResultReg = DestReg; if (getClassB(I.getType()) != cInt) ResultReg = makeAnotherReg (I.getType ()); unsigned OpCase = ~0; // FIXME: support long, ulong, fp. switch (I.getOpcode ()) { case Instruction::Add: OpCase = 0; break; case Instruction::Sub: OpCase = 1; break; case Instruction::Mul: OpCase = 2; break; case Instruction::And: OpCase = 3; break; case Instruction::Or: OpCase = 4; break; case Instruction::Xor: OpCase = 5; break; case Instruction::Shl: OpCase = 6; break; case Instruction::Shr: OpCase = 7+I.getType()->isSigned(); break; case Instruction::Div: case Instruction::Rem: { unsigned Dest = ResultReg; if (I.getOpcode() == Instruction::Rem) Dest = makeAnotherReg(I.getType()); // FIXME: this is probably only right for 32 bit operands. if (I.getType ()->isSigned()) { unsigned Tmp = makeAnotherReg (I.getType ()); // Sign extend into the Y register BuildMI (BB, V8::SRAri, 2, Tmp).addReg (Op0Reg).addZImm (31); BuildMI (BB, V8::WRrr, 2, V8::Y).addReg (Tmp).addReg (V8::G0); BuildMI (BB, V8::SDIVrr, 2, Dest).addReg (Op0Reg).addReg (Op1Reg); } else { // Zero extend into the Y register, ie, just set it to zero BuildMI (BB, V8::WRrr, 2, V8::Y).addReg (V8::G0).addReg (V8::G0); BuildMI (BB, V8::UDIVrr, 2, Dest).addReg (Op0Reg).addReg (Op1Reg); } if (I.getOpcode() == Instruction::Rem) { unsigned Tmp = makeAnotherReg (I.getType ()); BuildMI (BB, V8::SMULrr, 2, Tmp).addReg(Dest).addReg(Op1Reg); BuildMI (BB, V8::SUBrr, 2, ResultReg).addReg(Op0Reg).addReg(Tmp); } break; } default: visitInstruction (I); return; } if (OpCase != ~0U) { static const unsigned Opcodes[] = { V8::ADDrr, V8::SUBrr, V8::SMULrr, V8::ANDrr, V8::ORrr, V8::XORrr, V8::SLLrr, V8::SRLrr, V8::SRArr }; BuildMI (BB, Opcodes[OpCase], 2, ResultReg).addReg (Op0Reg).addReg (Op1Reg); } switch (getClass (I.getType ())) { case cByte: if (I.getType ()->isSigned ()) { // add byte BuildMI (BB, V8::ANDri, 2, DestReg).addReg (ResultReg).addZImm (0xff); } else { // add ubyte unsigned TmpReg = makeAnotherReg (I.getType ()); BuildMI (BB, V8::SLLri, 2, TmpReg).addReg (ResultReg).addZImm (24); BuildMI (BB, V8::SRAri, 2, DestReg).addReg (TmpReg).addZImm (24); } break; case cShort: if (I.getType ()->isSigned ()) { // add short unsigned TmpReg = makeAnotherReg (I.getType ()); BuildMI (BB, V8::SLLri, 2, TmpReg).addReg (ResultReg).addZImm (16); BuildMI (BB, V8::SRAri, 2, DestReg).addReg (TmpReg).addZImm (16); } else { // add ushort unsigned TmpReg = makeAnotherReg (I.getType ()); BuildMI (BB, V8::SLLri, 2, TmpReg).addReg (ResultReg).addZImm (16); BuildMI (BB, V8::SRLri, 2, DestReg).addReg (TmpReg).addZImm (16); } break; case cInt: // Nothing todo here. break; default: visitInstruction (I); return; } } void V8ISel::visitSetCondInst(Instruction &I) { unsigned Op0Reg = getReg (I.getOperand (0)); unsigned Op1Reg = getReg (I.getOperand (1)); unsigned DestReg = getReg (I); const Type *Ty = I.getOperand (0)->getType (); // Compare the two values. BuildMI(BB, V8::SUBCCrr, 2, V8::G0).addReg(Op0Reg).addReg(Op1Reg); unsigned BranchIdx; switch (I.getOpcode()) { default: assert(0 && "Unknown setcc instruction!"); case Instruction::SetEQ: BranchIdx = 0; break; case Instruction::SetNE: BranchIdx = 1; break; case Instruction::SetLT: BranchIdx = 2; break; case Instruction::SetGT: BranchIdx = 3; break; case Instruction::SetLE: BranchIdx = 4; break; case Instruction::SetGE: BranchIdx = 5; break; } static unsigned OpcodeTab[12] = { // LLVM SparcV8 // unsigned signed V8::BE, V8::BE, // seteq = be be V8::BNE, V8::BNE, // setne = bne bne V8::BCS, V8::BL, // setlt = bcs bl V8::BGU, V8::BG, // setgt = bgu bg V8::BLEU, V8::BLE, // setle = bleu ble V8::BCC, V8::BGE // setge = bcc bge }; unsigned Opcode = OpcodeTab[2*BranchIdx + (Ty->isSigned() ? 1 : 0)]; MachineBasicBlock *thisMBB = BB; const BasicBlock *LLVM_BB = BB->getBasicBlock (); // thisMBB: // ... // subcc %reg0, %reg1, %g0 // bCC copy1MBB // ba copy0MBB // FIXME: we wouldn't need copy0MBB (we could fold it into thisMBB) // if we could insert other, non-terminator instructions after the // bCC. But MBB->getFirstTerminator() can't understand this. MachineBasicBlock *copy1MBB = new MachineBasicBlock (LLVM_BB); F->getBasicBlockList ().push_back (copy1MBB); BuildMI (BB, Opcode, 1).addMBB (copy1MBB); MachineBasicBlock *copy0MBB = new MachineBasicBlock (LLVM_BB); F->getBasicBlockList ().push_back (copy0MBB); BuildMI (BB, V8::BA, 1).addMBB (copy0MBB); // Update machine-CFG edges BB->addSuccessor (copy1MBB); BB->addSuccessor (copy0MBB); // copy0MBB: // %FalseValue = or %G0, 0 // ba sinkMBB BB = copy0MBB; unsigned FalseValue = makeAnotherReg (I.getType ()); BuildMI (BB, V8::ORri, 2, FalseValue).addReg (V8::G0).addZImm (0); MachineBasicBlock *sinkMBB = new MachineBasicBlock (LLVM_BB); F->getBasicBlockList ().push_back (sinkMBB); BuildMI (BB, V8::BA, 1).addMBB (sinkMBB); // Update machine-CFG edges BB->addSuccessor (sinkMBB); DEBUG (std::cerr << "thisMBB is at " << (void*)thisMBB << "\n"); DEBUG (std::cerr << "copy1MBB is at " << (void*)copy1MBB << "\n"); DEBUG (std::cerr << "copy0MBB is at " << (void*)copy0MBB << "\n"); DEBUG (std::cerr << "sinkMBB is at " << (void*)sinkMBB << "\n"); // copy1MBB: // %TrueValue = or %G0, 1 // ba sinkMBB BB = copy1MBB; unsigned TrueValue = makeAnotherReg (I.getType ()); BuildMI (BB, V8::ORri, 2, TrueValue).addReg (V8::G0).addZImm (1); BuildMI (BB, V8::BA, 1).addMBB (sinkMBB); // Update machine-CFG edges BB->addSuccessor (sinkMBB); // sinkMBB: // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, copy1MBB ] // ... BB = sinkMBB; BuildMI (BB, V8::PHI, 4, DestReg).addReg (FalseValue) .addMBB (copy0MBB).addReg (TrueValue).addMBB (copy1MBB); } void V8ISel::visitAllocaInst(AllocaInst &I) { // Find the data size of the alloca inst's getAllocatedType. const Type *Ty = I.getAllocatedType(); unsigned TySize = TM.getTargetData().getTypeSize(Ty); unsigned ArraySizeReg = getReg (I.getArraySize ()); unsigned TySizeReg = getReg (ConstantUInt::get (Type::UIntTy, TySize)); unsigned TmpReg1 = makeAnotherReg (Type::UIntTy); unsigned TmpReg2 = makeAnotherReg (Type::UIntTy); unsigned StackAdjReg = makeAnotherReg (Type::UIntTy); // StackAdjReg = (ArraySize * TySize) rounded up to nearest doubleword boundary BuildMI (BB, V8::UMULrr, 2, TmpReg1).addReg (ArraySizeReg).addReg (TySizeReg); // Round up TmpReg1 to nearest doubleword boundary: BuildMI (BB, V8::ADDri, 2, TmpReg2).addReg (TmpReg1).addSImm (7); BuildMI (BB, V8::ANDri, 2, StackAdjReg).addReg (TmpReg2).addSImm (-8); // Subtract size from stack pointer, thereby allocating some space. BuildMI (BB, V8::SUBrr, 2, V8::SP).addReg (V8::SP).addReg (StackAdjReg); // Put a pointer to the space into the result register, by copying // the stack pointer. BuildMI (BB, V8::ADDri, 2, getReg(I)).addReg (V8::SP).addSImm (96); // Inform the Frame Information that we have just allocated a variable-sized // object. F->getFrameInfo()->CreateVariableSizedObject(); } /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the /// function, lowering any calls to unknown intrinsic functions into the /// equivalent LLVM code. void V8ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) { for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) if (CallInst *CI = dyn_cast(I++)) if (Function *F = CI->getCalledFunction()) switch (F->getIntrinsicID()) { case Intrinsic::not_intrinsic: break; default: // All other intrinsic calls we must lower. Instruction *Before = CI->getPrev(); TM.getIntrinsicLowering().LowerIntrinsicCall(CI); if (Before) { // Move iterator to instruction after call I = Before; ++I; } else { I = BB->begin(); } } } void V8ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) { unsigned TmpReg1, TmpReg2; switch (ID) { default: assert(0 && "Intrinsic not supported!"); } }