//===-- RegAllocSimple.cpp - A simple generic register allocator --- ------===// // // This file implements a simple register allocator. *Very* simple. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/Target/MachineInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "Support/Statistic.h" #include #include /// PhysRegClassMap - Construct a mapping of physical register numbers to their /// register classes. /// /// NOTE: This class will eventually be pulled out to somewhere shared. /// class PhysRegClassMap { std::map PhysReg2RegClassMap; public: PhysRegClassMap(const MRegisterInfo *RI) { for (MRegisterInfo::const_iterator I = RI->regclass_begin(), E = RI->regclass_end(); I != E; ++I) for (unsigned i=0; i < (*I)->getNumRegs(); ++i) PhysReg2RegClassMap[(*I)->getRegister(i)] = *I; } const TargetRegisterClass *operator[](unsigned Reg) { assert(PhysReg2RegClassMap[Reg] && "Register is not a known physreg!"); return PhysReg2RegClassMap[Reg]; } const TargetRegisterClass *get(unsigned Reg) { return operator[](Reg); } }; namespace { Statistic<> NumSpilled ("ra-simple", "Number of registers spilled"); Statistic<> NumReloaded("ra-simple", "Number of registers reloaded"); class RegAllocSimple : public FunctionPass { TargetMachine &TM; MachineFunction *MF; const MRegisterInfo *RegInfo; unsigned NumBytesAllocated; // Maps SSA Regs => offsets on the stack where these values are stored std::map VirtReg2OffsetMap; // Maps physical register to their register classes PhysRegClassMap PhysRegClasses; // RegsUsed - Keep track of what registers are currently in use. std::set RegsUsed; // RegClassIdx - Maps RegClass => which index we can take a register // from. Since this is a simple register allocator, when we need a register // of a certain class, we just take the next available one. std::map RegClassIdx; public: RegAllocSimple(TargetMachine &tm) : TM(tm), RegInfo(tm.getRegisterInfo()), PhysRegClasses(RegInfo) { RegsUsed.insert(RegInfo->getFramePointer()); RegsUsed.insert(RegInfo->getStackPointer()); cleanupAfterFunction(); } bool runOnFunction(Function &Fn) { return runOnMachineFunction(MachineFunction::get(&Fn)); } virtual const char *getPassName() const { return "Simple Register Allocator"; } private: /// runOnMachineFunction - Register allocate the whole function bool runOnMachineFunction(MachineFunction &Fn); /// AllocateBasicBlock - Register allocate the specified basic block. void AllocateBasicBlock(MachineBasicBlock &MBB); /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions /// in predecessor basic blocks. void EliminatePHINodes(MachineBasicBlock &MBB); bool isAvailableReg(unsigned Reg) { // assert(Reg < MRegisterInfo::FirstVirtualReg && "..."); return RegsUsed.find(Reg) == RegsUsed.end(); } /// allocateStackSpaceFor - This allocates space for the specified virtual /// register to be held on the stack. unsigned allocateStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *regClass); /// Given a virtual register, returns a physical register that is currently /// unused. /// /// Side effect: marks that register as being used until manually cleared /// unsigned getFreeReg(unsigned virtualReg); /// Returns all `borrowed' registers back to the free pool void clearAllRegs() { RegClassIdx.clear(); } /// Invalidates any references, real or implicit, to physical registers /// void invalidatePhysRegs(const MachineInstr *MI) { unsigned Opcode = MI->getOpcode(); const MachineInstrDescriptor &Desc = TM.getInstrInfo().get(Opcode); const unsigned *regs = Desc.ImplicitUses; while (*regs) RegsUsed.insert(*regs++); regs = Desc.ImplicitDefs; while (*regs) RegsUsed.insert(*regs++); } void cleanupAfterFunction() { VirtReg2OffsetMap.clear(); NumBytesAllocated = 4; // FIXME: This is X86 specific } /// Moves value from memory into that register MachineBasicBlock::iterator moveUseToReg (MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned VirtReg, unsigned &PhysReg); /// Saves reg value on the stack (maps virtual register to stack value) MachineBasicBlock::iterator saveVirtRegToStack (MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned VirtReg, unsigned PhysReg); MachineBasicBlock::iterator savePhysRegToStack (MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned PhysReg); }; } /// allocateStackSpaceFor - This allocates space for the specified virtual /// register to be held on the stack. unsigned RegAllocSimple::allocateStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *regClass) { if (VirtReg2OffsetMap.find(VirtReg) == VirtReg2OffsetMap.end()) { unsigned RegSize = regClass->getDataSize(); // Align NumBytesAllocated. We should be using TargetData alignment stuff // to determine this, but we don't know the LLVM type associated with the // virtual register. Instead, just align to a multiple of the size for now. NumBytesAllocated += RegSize-1; NumBytesAllocated = NumBytesAllocated/RegSize*RegSize; // Assign the slot... VirtReg2OffsetMap[VirtReg] = NumBytesAllocated; // Reserve the space! NumBytesAllocated += RegSize; } return VirtReg2OffsetMap[VirtReg]; } unsigned RegAllocSimple::getFreeReg(unsigned virtualReg) { const TargetRegisterClass* regClass = MF->getRegClass(virtualReg); unsigned physReg; assert(regClass); if (RegClassIdx.find(regClass) != RegClassIdx.end()) { unsigned regIdx = RegClassIdx[regClass]++; assert(regIdx < regClass->getNumRegs() && "Not enough registers!"); physReg = regClass->getRegister(regIdx); } else { physReg = regClass->getRegister(0); // assert(physReg < regClass->getNumRegs() && "No registers in class!"); RegClassIdx[regClass] = 1; } if (isAvailableReg(physReg)) return physReg; else return getFreeReg(virtualReg); } MachineBasicBlock::iterator RegAllocSimple::moveUseToReg (MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned VirtReg, unsigned &PhysReg) { const TargetRegisterClass* regClass = MF->getRegClass(VirtReg); assert(regClass); unsigned stackOffset = allocateStackSpaceFor(VirtReg, regClass); PhysReg = getFreeReg(VirtReg); // Add move instruction(s) ++NumReloaded; return RegInfo->loadRegOffset2Reg(MBB, I, PhysReg, RegInfo->getFramePointer(), -stackOffset, regClass->getDataSize()); } MachineBasicBlock::iterator RegAllocSimple::saveVirtRegToStack (MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned VirtReg, unsigned PhysReg) { const TargetRegisterClass* regClass = MF->getRegClass(VirtReg); assert(regClass); unsigned stackOffset = allocateStackSpaceFor(VirtReg, regClass); // Add move instruction(s) ++NumSpilled; return RegInfo->storeReg2RegOffset(MBB, I, PhysReg, RegInfo->getFramePointer(), -stackOffset, regClass->getDataSize()); } MachineBasicBlock::iterator RegAllocSimple::savePhysRegToStack (MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned PhysReg) { const TargetRegisterClass* regClass = MF->getRegClass(PhysReg); assert(regClass); unsigned offset = allocateStackSpaceFor(PhysReg, regClass); // Add move instruction(s) ++NumSpilled; return RegInfo->storeReg2RegOffset(MBB, I, PhysReg, RegInfo->getFramePointer(), offset, regClass->getDataSize()); } /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in /// predecessor basic blocks. void RegAllocSimple::EliminatePHINodes(MachineBasicBlock &MBB) { const MachineInstrInfo &MII = TM.getInstrInfo(); while (MBB.front()->getOpcode() == 0) { MachineInstr *MI = MBB.front(); // Unlink the PHI node from the basic block... but don't delete the PHI MBB.erase(MBB.begin()); // a preliminary pass that will invalidate any registers that // are used by the instruction (including implicit uses) invalidatePhysRegs(MI); DEBUG(std::cerr << "num invalid regs: " << RegsUsed.size() << "\n"); DEBUG(std::cerr << "num ops: " << MI->getNumOperands() << "\n"); MachineOperand &targetReg = MI->getOperand(0); // If it's a virtual register, allocate a physical one otherwise, just use // whatever register is there now note: it MUST be a register -- we're // assigning to it! // unsigned virtualReg = (unsigned) targetReg.getAllocatedRegNum(); unsigned physReg; if (targetReg.isVirtualRegister()) { physReg = getFreeReg(virtualReg); } else { physReg = virtualReg; } // Find the register class of the target register: should be the // same as the values we're trying to store there const TargetRegisterClass* regClass = PhysRegClasses[physReg]; assert(regClass && "Target register class not found!"); unsigned dataSize = regClass->getDataSize(); for (int i = MI->getNumOperands() - 1; i >= 2; i-=2) { MachineOperand &opVal = MI->getOperand(i-1); // Get the MachineBasicBlock equivalent of the BasicBlock that is the // source path the phi MachineBasicBlock &opBlock = *MI->getOperand(i).getMachineBasicBlock(); // Check to make sure we haven't already emitted the copy for this block. // This can happen because PHI nodes may have multiple entries for the // same basic block. It doesn't matter which entry we use though, because // all incoming values are guaranteed to be the same for a particular bb. // // Note that this is N^2 in the number of phi node entries, but since the // # of entries is tiny, this is not a problem. // bool HaveNotEmitted = true; for (int op = MI->getNumOperands() - 1; op != i; op -= 2) if (&opBlock == MI->getOperand(op).getMachineBasicBlock()) { HaveNotEmitted = false; break; } if (HaveNotEmitted) { MachineBasicBlock::iterator opI = opBlock.end(); MachineInstr *opMI = *--opI; // must backtrack over ALL the branches in the previous block while (MII.isBranch(opMI->getOpcode()) && opI != opBlock.begin()) opMI = *--opI; // move back to the first branch instruction so new instructions // are inserted right in front of it and not in front of a non-branch if (!MII.isBranch(opMI->getOpcode())) ++opI; // Retrieve the constant value from this op, move it to target // register of the phi if (opVal.isImmediate()) { opI = RegInfo->moveImm2Reg(opBlock, opI, physReg, (unsigned) opVal.getImmedValue(), dataSize); saveVirtRegToStack(opBlock, opI, virtualReg, physReg); } else { // Allocate a physical register and add a move in the BB unsigned opVirtualReg = opVal.getAllocatedRegNum(); unsigned opPhysReg; opI = moveUseToReg(opBlock, opI, opVirtualReg, physReg); // Save that register value to the stack of the TARGET REG saveVirtRegToStack(opBlock, opI, virtualReg, physReg); } } // make regs available to other instructions clearAllRegs(); } // really delete the instruction delete MI; } } void RegAllocSimple::AllocateBasicBlock(MachineBasicBlock &MBB) { // Handle PHI instructions specially: add moves to each pred block EliminatePHINodes(MBB); //loop over each basic block for (MachineBasicBlock::iterator I = MBB.begin(); I != MBB.end(); ++I) { // Made to combat the incorrect allocation of r2 = add r1, r1 std::map VirtReg2PhysRegMap; MachineInstr *MI = *I; // a preliminary pass that will invalidate any registers that // are used by the instruction (including implicit uses) invalidatePhysRegs(MI); // Loop over uses, move from memory into registers for (int i = MI->getNumOperands() - 1; i >= 0; --i) { MachineOperand &op = MI->getOperand(i); if (op.isVirtualRegister()) { unsigned virtualReg = (unsigned) op.getAllocatedRegNum(); DEBUG(std::cerr << "op: " << op << "\n"); DEBUG(std::cerr << "\t inst[" << i << "]: "; MI->print(std::cerr, TM)); // make sure the same virtual register maps to the same physical // register in any given instruction unsigned physReg; if (VirtReg2PhysRegMap.find(virtualReg) != VirtReg2PhysRegMap.end()) { physReg = VirtReg2PhysRegMap[virtualReg]; } else { if (op.opIsDef()) { if (TM.getInstrInfo().isTwoAddrInstr(MI->getOpcode()) && i == 0) { // must be same register number as the first operand // This maps a = b + c into b += c, and saves b into a's spot assert(MI->getOperand(1).isRegister() && MI->getOperand(1).getAllocatedRegNum() && MF->getRegClass(virtualReg) == PhysRegClasses[MI->getOperand(1).getAllocatedRegNum()] && "Two address instruction invalid!"); physReg = MI->getOperand(1).getAllocatedRegNum(); } else { physReg = getFreeReg(virtualReg); } MachineBasicBlock::iterator J = I; J = saveVirtRegToStack(MBB, ++J, virtualReg, physReg); I = --J; } else { I = moveUseToReg(MBB, I, virtualReg, physReg); } VirtReg2PhysRegMap[virtualReg] = physReg; } MI->SetMachineOperandReg(i, physReg); DEBUG(std::cerr << "virt: " << virtualReg << ", phys: " << op.getAllocatedRegNum() << "\n"); } } clearAllRegs(); } } /// runOnMachineFunction - Register allocate the whole function /// bool RegAllocSimple::runOnMachineFunction(MachineFunction &Fn) { DEBUG(std::cerr << "Machine Function " << "\n"); MF = &Fn; for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end(); MBB != MBBe; ++MBB) AllocateBasicBlock(*MBB); // add prologue we should preserve callee-save registers... RegInfo->emitPrologue(Fn, NumBytesAllocated); const MachineInstrInfo &MII = TM.getInstrInfo(); // add epilogue to restore the callee-save registers // loop over the basic block for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end(); MBB != MBBe; ++MBB) { // check if last instruction is a RET if (MII.isReturn(MBB->back()->getOpcode())) { // this block has a return instruction, add epilogue RegInfo->emitEpilogue(*MBB, NumBytesAllocated); } } cleanupAfterFunction(); return false; // We never modify the LLVM itself. } Pass *createSimpleX86RegisterAllocator(TargetMachine &TM) { return new RegAllocSimple(TM); }