//===- DSGraph.h - Represent a collection of data structures ----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This header defines the data structure graph (DSGraph) and the // ReachabilityCloner class. // //===----------------------------------------------------------------------===// #ifndef LLVM_ANALYSIS_DSGRAPH_H #define LLVM_ANALYSIS_DSGRAPH_H #include "llvm/Analysis/DSNode.h" namespace llvm { class GlobalValue; //===----------------------------------------------------------------------===// /// DSScalarMap - An instance of this class is used to keep track of all of /// which DSNode each scalar in a function points to. This is specialized to /// keep track of globals with nodes in the function, and to keep track of the /// unique DSNodeHandle being used by the scalar map. /// /// This class is crucial to the efficiency of DSA with some large SCC's. In /// these cases, the cost of iterating over the scalar map dominates the cost /// of DSA. In all of these cases, the DSA phase is really trying to identify /// globals or unique node handles active in the function. /// class DSScalarMap { typedef hash_map ValueMapTy; ValueMapTy ValueMap; typedef hash_set GlobalSetTy; GlobalSetTy GlobalSet; public: // Compatibility methods: provide an interface compatible with a map of // Value* to DSNodeHandle's. typedef ValueMapTy::const_iterator const_iterator; typedef ValueMapTy::iterator iterator; iterator begin() { return ValueMap.begin(); } iterator end() { return ValueMap.end(); } const_iterator begin() const { return ValueMap.begin(); } const_iterator end() const { return ValueMap.end(); } iterator find(Value *V) { return ValueMap.find(V); } const_iterator find(Value *V) const { return ValueMap.find(V); } unsigned count(Value *V) const { return ValueMap.count(V); } void erase(Value *V) { erase(find(V)); } /// replaceScalar - When an instruction needs to be modified, this method can /// be used to update the scalar map to remove the old and insert the new. void replaceScalar(Value *Old, Value *New) { iterator I = find(Old); assert(I != end() && "Old value is not in the map!"); ValueMap.insert(std::make_pair(New, I->second)); erase(I); } DSNodeHandle &operator[](Value *V) { std::pair IP = ValueMap.insert(std::make_pair(V, DSNodeHandle())); if (IP.second) { // Inserted the new entry into the map. if (GlobalValue *GV = dyn_cast(V)) GlobalSet.insert(GV); } return IP.first->second; } void erase(iterator I) { assert(I != ValueMap.end() && "Cannot erase end!"); if (GlobalValue *GV = dyn_cast(I->first)) GlobalSet.erase(GV); ValueMap.erase(I); } void clear() { ValueMap.clear(); GlobalSet.clear(); } // Access to the global set: the set of all globals currently in the // scalar map. typedef GlobalSetTy::const_iterator global_iterator; global_iterator global_begin() const { return GlobalSet.begin(); } global_iterator global_end() const { return GlobalSet.end(); } }; //===----------------------------------------------------------------------===// /// DSGraph - The graph that represents a function. /// struct DSGraph { // Public data-type declarations... typedef DSScalarMap ScalarMapTy; typedef hash_map ReturnNodesTy; typedef hash_set GlobalSetTy; typedef ilist NodeListTy; /// NodeMapTy - This data type is used when cloning one graph into another to /// keep track of the correspondence between the nodes in the old and new /// graphs. typedef hash_map NodeMapTy; private: DSGraph *GlobalsGraph; // Pointer to the common graph of global objects bool PrintAuxCalls; // Should this graph print the Aux calls vector? NodeListTy Nodes; ScalarMapTy ScalarMap; // ReturnNodes - A return value for every function merged into this graph. // Each DSGraph may have multiple functions merged into it at any time, which // is used for representing SCCs. // ReturnNodesTy ReturnNodes; // FunctionCalls - This vector maintains a single entry for each call // instruction in the current graph. The first entry in the vector is the // scalar that holds the return value for the call, the second is the function // scalar being invoked, and the rest are pointer arguments to the function. // This vector is built by the Local graph and is never modified after that. // std::vector FunctionCalls; // AuxFunctionCalls - This vector contains call sites that have been processed // by some mechanism. In pratice, the BU Analysis uses this vector to hold // the _unresolved_ call sites, because it cannot modify FunctionCalls. // std::vector AuxFunctionCalls; // InlinedGlobals - This set records which globals have been inlined from // other graphs (callers or callees, depending on the pass) into this one. // GlobalSetTy InlinedGlobals; /// TD - This is the target data object for the machine this graph is /// constructed for. const TargetData &TD; void operator=(const DSGraph &); // DO NOT IMPLEMENT public: // Create a new, empty, DSGraph. DSGraph(const TargetData &td) : GlobalsGraph(0), PrintAuxCalls(false), TD(td) {} // Compute the local DSGraph DSGraph(const TargetData &td, Function &F, DSGraph *GlobalsGraph); // Copy ctor - If you want to capture the node mapping between the source and // destination graph, you may optionally do this by specifying a map to record // this into. // // Note that a copied graph does not retain the GlobalsGraph pointer of the // source. You need to set a new GlobalsGraph with the setGlobalsGraph // method. // DSGraph(const DSGraph &DSG); DSGraph(const DSGraph &DSG, NodeMapTy &NodeMap); ~DSGraph(); DSGraph *getGlobalsGraph() const { return GlobalsGraph; } void setGlobalsGraph(DSGraph *G) { GlobalsGraph = G; } /// getTargetData - Return the TargetData object for the current target. /// const TargetData &getTargetData() const { return TD; } /// setPrintAuxCalls - If you call this method, the auxillary call vector will /// be printed instead of the standard call vector to the dot file. /// void setPrintAuxCalls() { PrintAuxCalls = true; } bool shouldPrintAuxCalls() const { return PrintAuxCalls; } /// node_iterator/begin/end - Iterate over all of the nodes in the graph. Be /// extremely careful with these methods because any merging of nodes could /// cause the node to be removed from this list. This means that if you are /// iterating over nodes and doing something that could cause _any_ node to /// merge, your node_iterators into this graph can be invalidated. typedef NodeListTy::compat_iterator node_iterator; node_iterator node_begin() const { return Nodes.compat_begin(); } node_iterator node_end() const { return Nodes.compat_end(); } /// getFunctionNames - Return a space separated list of the name of the /// functions in this graph (if any) std::string getFunctionNames() const; /// addNode - Add a new node to the graph. /// void addNode(DSNode *N) { Nodes.push_back(N); } void unlinkNode(DSNode *N) { Nodes.remove(N); } /// getScalarMap - Get a map that describes what the nodes the scalars in this /// function point to... /// ScalarMapTy &getScalarMap() { return ScalarMap; } const ScalarMapTy &getScalarMap() const { return ScalarMap; } /// getFunctionCalls - Return the list of call sites in the original local /// graph... /// const std::vector &getFunctionCalls() const { return FunctionCalls; } /// getAuxFunctionCalls - Get the call sites as modified by whatever passes /// have been run. /// std::vector &getAuxFunctionCalls() { return AuxFunctionCalls; } const std::vector &getAuxFunctionCalls() const { return AuxFunctionCalls; } /// getInlinedGlobals - Get the set of globals that are have been inlined /// (from callees in BU or from callers in TD) into the current graph. /// GlobalSetTy& getInlinedGlobals() { return InlinedGlobals; } /// getNodeForValue - Given a value that is used or defined in the body of the /// current function, return the DSNode that it points to. /// DSNodeHandle &getNodeForValue(Value *V) { return ScalarMap[V]; } const DSNodeHandle &getNodeForValue(Value *V) const { ScalarMapTy::const_iterator I = ScalarMap.find(V); assert(I != ScalarMap.end() && "Use non-const lookup function if node may not be in the map"); return I->second; } /// getReturnNodes - Return the mapping of functions to their return nodes for /// this graph. const ReturnNodesTy &getReturnNodes() const { return ReturnNodes; } ReturnNodesTy &getReturnNodes() { return ReturnNodes; } /// getReturnNodeFor - Return the return node for the specified function. /// DSNodeHandle &getReturnNodeFor(Function &F) { ReturnNodesTy::iterator I = ReturnNodes.find(&F); assert(I != ReturnNodes.end() && "F not in this DSGraph!"); return I->second; } const DSNodeHandle &getReturnNodeFor(Function &F) const { ReturnNodesTy::const_iterator I = ReturnNodes.find(&F); assert(I != ReturnNodes.end() && "F not in this DSGraph!"); return I->second; } /// getGraphSize - Return the number of nodes in this graph. /// unsigned getGraphSize() const { return Nodes.size(); } /// print - Print a dot graph to the specified ostream... /// void print(std::ostream &O) const; /// dump - call print(std::cerr), for use from the debugger... /// void dump() const; /// viewGraph - Emit a dot graph, run 'dot', run gv on the postscript file, /// then cleanup. For use from the debugger. void viewGraph() const; void writeGraphToFile(std::ostream &O, const std::string &GraphName) const; /// maskNodeTypes - Apply a mask to all of the node types in the graph. This /// is useful for clearing out markers like Incomplete. /// void maskNodeTypes(unsigned Mask) { for (node_iterator I = node_begin(), E = node_end(); I != E; ++I) (*I)->maskNodeTypes(Mask); } void maskIncompleteMarkers() { maskNodeTypes(~DSNode::Incomplete); } // markIncompleteNodes - Traverse the graph, identifying nodes that may be // modified by other functions that have not been resolved yet. This marks // nodes that are reachable through three sources of "unknownness": // Global Variables, Function Calls, and Incoming Arguments // // For any node that may have unknown components (because something outside // the scope of current analysis may have modified it), the 'Incomplete' flag // is added to the NodeType. // enum MarkIncompleteFlags { MarkFormalArgs = 1, IgnoreFormalArgs = 0, IgnoreGlobals = 2, MarkGlobalsIncomplete = 0, }; void markIncompleteNodes(unsigned Flags); // removeDeadNodes - Use a reachability analysis to eliminate subgraphs that // are unreachable. This often occurs because the data structure doesn't // "escape" into it's caller, and thus should be eliminated from the caller's // graph entirely. This is only appropriate to use when inlining graphs. // enum RemoveDeadNodesFlags { RemoveUnreachableGlobals = 1, KeepUnreachableGlobals = 0, }; void removeDeadNodes(unsigned Flags); /// CloneFlags enum - Bits that may be passed into the cloneInto method to /// specify how to clone the function graph. enum CloneFlags { StripAllocaBit = 1 << 0, KeepAllocaBit = 0, DontCloneCallNodes = 1 << 1, CloneCallNodes = 0, DontCloneAuxCallNodes = 1 << 2, CloneAuxCallNodes = 0, StripModRefBits = 1 << 3, KeepModRefBits = 0, StripIncompleteBit = 1 << 4, KeepIncompleteBit = 0, UpdateInlinedGlobals = 1 << 5, DontUpdateInlinedGlobals = 0, }; void updateFromGlobalGraph(); /// computeNodeMapping - Given roots in two different DSGraphs, traverse the /// nodes reachable from the two graphs, computing the mapping of nodes from /// the first to the second graph. /// static void computeNodeMapping(const DSNodeHandle &NH1, const DSNodeHandle &NH2, NodeMapTy &NodeMap, bool StrictChecking = true); /// cloneInto - Clone the specified DSGraph into the current graph. The /// translated ScalarMap for the old function is filled into the OldValMap /// member, and the translated ReturnNodes map is returned into ReturnNodes. /// OldNodeMap contains a mapping from the original nodes to the newly cloned /// nodes. /// /// The CloneFlags member controls various aspects of the cloning process. /// void cloneInto(const DSGraph &G, ScalarMapTy &OldValMap, ReturnNodesTy &OldReturnNodes, NodeMapTy &OldNodeMap, unsigned CloneFlags = 0); /// mergeInGraph - The method is used for merging graphs together. If the /// argument graph is not *this, it makes a clone of the specified graph, then /// merges the nodes specified in the call site with the formal arguments in /// the graph. If the StripAlloca's argument is 'StripAllocaBit' then Alloca /// markers are removed from nodes. /// void mergeInGraph(const DSCallSite &CS, Function &F, const DSGraph &Graph, unsigned CloneFlags); /// getCallSiteForArguments - Get the arguments and return value bindings for /// the specified function in the current graph. /// DSCallSite getCallSiteForArguments(Function &F) const; // Methods for checking to make sure graphs are well formed... void AssertNodeInGraph(const DSNode *N) const { assert((!N || N->getParentGraph() == this) && "AssertNodeInGraph: Node is not in graph!"); } void AssertNodeContainsGlobal(const DSNode *N, GlobalValue *GV) const { assert(std::find(N->getGlobals().begin(), N->getGlobals().end(), GV) != N->getGlobals().end() && "Global value not in node!"); } void AssertCallSiteInGraph(const DSCallSite &CS) const { if (CS.isIndirectCall()) AssertNodeInGraph(CS.getCalleeNode()); AssertNodeInGraph(CS.getRetVal().getNode()); for (unsigned j = 0, e = CS.getNumPtrArgs(); j != e; ++j) AssertNodeInGraph(CS.getPtrArg(j).getNode()); } void AssertCallNodesInGraph() const { for (unsigned i = 0, e = FunctionCalls.size(); i != e; ++i) AssertCallSiteInGraph(FunctionCalls[i]); } void AssertAuxCallNodesInGraph() const { for (unsigned i = 0, e = AuxFunctionCalls.size(); i != e; ++i) AssertCallSiteInGraph(AuxFunctionCalls[i]); } void AssertGraphOK() const; /// removeTriviallyDeadNodes - After the graph has been constructed, this /// method removes all unreachable nodes that are created because they got /// merged with other nodes in the graph. This is used as the first step of /// removeDeadNodes. /// void removeTriviallyDeadNodes(); }; /// ReachabilityCloner - This class is used to incrementally clone and merge /// nodes from a non-changing source graph into a potentially mutating /// destination graph. Nodes are only cloned over on demand, either in /// responds to a merge() or getClonedNH() call. When a node is cloned over, /// all of the nodes reachable from it are automatically brought over as well. class ReachabilityCloner { DSGraph &Dest; const DSGraph &Src; /// BitsToKeep - These bits are retained from the source node when the /// source nodes are merged into the destination graph. unsigned BitsToKeep; unsigned CloneFlags; // NodeMap - A mapping from nodes in the source graph to the nodes that // represent them in the destination graph. DSGraph::NodeMapTy NodeMap; public: ReachabilityCloner(DSGraph &dest, const DSGraph &src, unsigned cloneFlags) : Dest(dest), Src(src), CloneFlags(cloneFlags) { assert(&Dest != &Src && "Cannot clone from graph to same graph!"); BitsToKeep = ~DSNode::DEAD; if (CloneFlags & DSGraph::StripAllocaBit) BitsToKeep &= ~DSNode::AllocaNode; if (CloneFlags & DSGraph::StripModRefBits) BitsToKeep &= ~(DSNode::Modified | DSNode::Read); if (CloneFlags & DSGraph::StripIncompleteBit) BitsToKeep &= ~DSNode::Incomplete; } DSNodeHandle getClonedNH(const DSNodeHandle &SrcNH); void merge(const DSNodeHandle &NH, const DSNodeHandle &SrcNH); /// mergeCallSite - Merge the nodes reachable from the specified src call /// site into the nodes reachable from DestCS. void mergeCallSite(const DSCallSite &DestCS, const DSCallSite &SrcCS); bool clonedNode() const { return !NodeMap.empty(); } void destroy() { NodeMap.clear(); } }; } // End llvm namespace #endif