//===- X86InstrInfo.td - Describe the X86 Instruction Set -------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the X86 instruction set, defining the instructions, and // properties of the instructions which are needed for code generation, machine // code emission, and analysis. // //===----------------------------------------------------------------------===// // Format specifies the encoding used by the instruction. This is part of the // ad-hoc solution used to emit machine instruction encodings by our machine // code emitter. class Format val> { bits<5> Value = val; } def Pseudo : Format<0>; def RawFrm : Format<1>; def AddRegFrm : Format<2>; def MRMDestReg : Format<3>; def MRMDestMem : Format<4>; def MRMSrcReg : Format<5>; def MRMSrcMem : Format<6>; def MRM0r : Format<16>; def MRM1r : Format<17>; def MRM2r : Format<18>; def MRM3r : Format<19>; def MRM4r : Format<20>; def MRM5r : Format<21>; def MRM6r : Format<22>; def MRM7r : Format<23>; def MRM0m : Format<24>; def MRM1m : Format<25>; def MRM2m : Format<26>; def MRM3m : Format<27>; def MRM4m : Format<28>; def MRM5m : Format<29>; def MRM6m : Format<30>; def MRM7m : Format<31>; // ImmType - This specifies the immediate type used by an instruction. This is // part of the ad-hoc solution used to emit machine instruction encodings by our // machine code emitter. class ImmType val> { bits<2> Value = val; } def NoImm : ImmType<0>; def Imm8 : ImmType<1>; def Imm16 : ImmType<2>; def Imm32 : ImmType<3>; // MemType - This specifies the immediate type used by an instruction. This is // part of the ad-hoc solution used to emit machine instruction encodings by our // machine code emitter. class MemType val> { bits<3> Value = val; } def NoMem : MemType<0>; def Mem8 : MemType<1>; def Mem16 : MemType<2>; def Mem32 : MemType<3>; def Mem64 : MemType<4>; def Mem80 : MemType<5>; def Mem128 : MemType<6>; // FPFormat - This specifies what form this FP instruction has. This is used by // the Floating-Point stackifier pass. class FPFormat val> { bits<3> Value = val; } def NotFP : FPFormat<0>; def ZeroArgFP : FPFormat<1>; def OneArgFP : FPFormat<2>; def OneArgFPRW : FPFormat<3>; def TwoArgFP : FPFormat<4>; def CondMovFP : FPFormat<5>; def SpecialFP : FPFormat<6>; class X86Inst opcod, Format f, MemType m, ImmType i> : Instruction { let Namespace = "X86"; let Name = nam; bits<8> Opcode = opcod; Format Form = f; bits<5> FormBits = Form.Value; MemType MemT = m; bits<3> MemTypeBits = MemT.Value; ImmType ImmT = i; bits<2> ImmTypeBits = ImmT.Value; // Attributes specific to X86 instructions... bit hasOpSizePrefix = 0; // Does this inst have a 0x66 prefix? bit printImplicitUsesBefore = 0; // Should we print implicit uses before this inst? bit printImplicitUsesAfter = 0; // Should we print implicit uses after this inst? bits<4> Prefix = 0; // Which prefix byte does this inst have? FPFormat FPForm; // What flavor of FP instruction is this? bits<3> FPFormBits = 0; } class Imp uses, list defs> { list Uses = uses; list Defs = defs; } class Pattern { dag Pattern = P; } // Prefix byte classes which are used to indicate to the ad-hoc machine code // emitter that various prefix bytes are required. class OpSize { bit hasOpSizePrefix = 1; } class TB { bits<4> Prefix = 1; } class REP { bits<4> Prefix = 2; } class D8 { bits<4> Prefix = 3; } class D9 { bits<4> Prefix = 4; } class DA { bits<4> Prefix = 5; } class DB { bits<4> Prefix = 6; } class DC { bits<4> Prefix = 7; } class DD { bits<4> Prefix = 8; } class DE { bits<4> Prefix = 9; } class DF { bits<4> Prefix = 10; } //===----------------------------------------------------------------------===// // Instruction templates... class I o, Format f> : X86Inst; class Im o, Format f, MemType m> : X86Inst; class Im8 o, Format f> : Im; class Im16 o, Format f> : Im; class Im32 o, Format f> : Im; class Ii o, Format f, ImmType i> : X86Inst; class Ii8 o, Format f> : Ii; class Ii16 o, Format f> : Ii; class Ii32 o, Format f> : Ii; class Im8i8 o, Format f> : X86Inst; class Im16i16 o, Format f> : X86Inst; class Im32i32 o, Format f> : X86Inst; class Im16i8 o, Format f> : X86Inst; class Im32i8 o, Format f> : X86Inst; // Helper for shift instructions class UsesCL { list Uses = [CL]; bit printImplicitUsesAfter = 1; } //===----------------------------------------------------------------------===// // Instruction list... // def PHI : I<"PHI", 0, Pseudo>; // PHI node... def NOOP : I<"nop", 0x90, RawFrm>; // nop def ADJCALLSTACKDOWN : I<"ADJCALLSTACKDOWN", 0, Pseudo>; def ADJCALLSTACKUP : I<"ADJCALLSTACKUP", 0, Pseudo>; def IMPLICIT_USE : I<"IMPLICIT_USE", 0, Pseudo>; def IMPLICIT_DEF : I<"IMPLICIT_DEF", 0, Pseudo>; let isTerminator = 1 in let Defs = [FP0, FP1, FP2, FP3, FP4, FP5, FP6] in def FP_REG_KILL : I<"FP_REG_KILL", 0, Pseudo>; //===----------------------------------------------------------------------===// // Control Flow Instructions... // // Return instruction... let isTerminator = 1, isReturn = 1 in def RET : I<"ret", 0xC3, RawFrm>, Pattern<(retvoid)>; // All branches are RawFrm, Void, Branch, and Terminators let isBranch = 1, isTerminator = 1 in class IBr opcode> : I; def JMP : IBr<"jmp", 0xE9>, Pattern<(br basicblock)>; def JB : IBr<"jb" , 0x82>, TB; def JAE : IBr<"jae", 0x83>, TB; def JE : IBr<"je" , 0x84>, TB, Pattern<(isVoid (unspec1 basicblock))>; def JNE : IBr<"jne", 0x85>, TB; def JBE : IBr<"jbe", 0x86>, TB; def JA : IBr<"ja" , 0x87>, TB; def JS : IBr<"js" , 0x88>, TB; def JNS : IBr<"jns", 0x89>, TB; def JL : IBr<"jl" , 0x8C>, TB; def JGE : IBr<"jge", 0x8D>, TB; def JLE : IBr<"jle", 0x8E>, TB; def JG : IBr<"jg" , 0x8F>, TB; //===----------------------------------------------------------------------===// // Call Instructions... // let isCall = 1 in // All calls clobber the non-callee saved registers... let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6] in { def CALLpcrel32 : I <"call", 0xE8, RawFrm>; def CALL32r : I <"call", 0xFF, MRM2r>; def CALL32m : Im32<"call", 0xFF, MRM2m>; } //===----------------------------------------------------------------------===// // Miscellaneous Instructions... // def LEAVE : I<"leave", 0xC9, RawFrm>, Imp<[EBP,ESP],[EBP,ESP]>; def POP32r : I<"pop", 0x58, AddRegFrm>, Imp<[ESP],[ESP]>; let isTwoAddress = 1 in // R32 = bswap R32 def BSWAP32r : I<"bswap", 0xC8, AddRegFrm>, TB; def XCHG8rr : I <"xchg", 0x86, MRMDestReg>; // xchg R8, R8 def XCHG16rr : I <"xchg", 0x87, MRMDestReg>, OpSize; // xchg R16, R16 def XCHG32rr : I <"xchg", 0x87, MRMDestReg>; // xchg R32, R32 def XCHG8mr : Im8 <"xchg", 0x86, MRMDestMem>; // xchg [mem8], R8 def XCHG16mr : Im16<"xchg", 0x87, MRMDestMem>, OpSize; // xchg [mem16], R16 def XCHG32mr : Im32<"xchg", 0x87, MRMDestMem>; // xchg [mem32], R32 def XCHG8rm : Im8 <"xchg", 0x86, MRMSrcMem >; // xchg R8, [mem8] def XCHG16rm : Im16<"xchg", 0x87, MRMSrcMem >, OpSize; // xchg R16, [mem16] def XCHG32rm : Im32<"xchg", 0x87, MRMSrcMem >; // xchg R32, [mem32] def LEA16r : Im32<"lea", 0x8D, MRMSrcMem>, OpSize; // R16 = lea [mem] def LEA32r : Im32<"lea", 0x8D, MRMSrcMem>; // R32 = lea [mem] def REP_MOVSB : I<"rep movsb", 0xA4, RawFrm>, REP, Imp<[ECX,EDI,ESI], [ECX,EDI,ESI]>; def REP_MOVSW : I<"rep movsw", 0xA5, RawFrm>, REP, OpSize, Imp<[ECX,EDI,ESI], [ECX,EDI,ESI]>; def REP_MOVSD : I<"rep movsd", 0xA5, RawFrm>, REP, Imp<[ECX,EDI,ESI], [ECX,EDI,ESI]>; def REP_STOSB : I<"rep stosb", 0xAA, RawFrm>, REP, Imp<[AL,ECX,EDI], [ECX,EDI]>; def REP_STOSW : I<"rep stosw", 0xAB, RawFrm>, REP, OpSize, Imp<[AX,ECX,EDI], [ECX,EDI]>; def REP_STOSD : I<"rep stosd", 0xAB, RawFrm>, REP, Imp<[EAX,ECX,EDI], [ECX,EDI]>; //===----------------------------------------------------------------------===// // Move Instructions... // def MOV8rr : I <"mov", 0x88, MRMDestReg>, Pattern<(set R8 , R8 )>; def MOV16rr : I <"mov", 0x89, MRMDestReg>, OpSize, Pattern<(set R16, R16)>; def MOV32rr : I <"mov", 0x89, MRMDestReg>, Pattern<(set R32, R32)>; def MOV8ri : Ii8 <"mov", 0xB0, AddRegFrm >, Pattern<(set R8 , imm )>; def MOV16ri : Ii16 <"mov", 0xB8, AddRegFrm >, OpSize, Pattern<(set R16, imm)>; def MOV32ri : Ii32 <"mov", 0xB8, AddRegFrm >, Pattern<(set R32, imm)>; def MOV8mi : Im8i8 <"mov", 0xC6, MRM0m >; // [mem8] = imm8 def MOV16mi : Im16i16<"mov", 0xC7, MRM0m >, OpSize; // [mem16] = imm16 def MOV32mi : Im32i32<"mov", 0xC7, MRM0m >; // [mem32] = imm32 def MOV8rm : Im8 <"mov", 0x8A, MRMSrcMem>; // R8 = [mem8] def MOV16rm : Im16 <"mov", 0x8B, MRMSrcMem>, OpSize, // R16 = [mem16] Pattern<(set R16, (load (plus R32, (plus (times imm, R32), imm))))>; def MOV32rm : Im32 <"mov", 0x8B, MRMSrcMem>, // R32 = [mem32] Pattern<(set R32, (load (plus R32, (plus (times imm, R32), imm))))>; def MOV8mr : Im8 <"mov", 0x88, MRMDestMem>; // [mem8] = R8 def MOV16mr : Im16 <"mov", 0x89, MRMDestMem>, OpSize; // [mem16] = R16 def MOV32mr : Im32 <"mov", 0x89, MRMDestMem>; // [mem32] = R32 //===----------------------------------------------------------------------===// // Fixed-Register Multiplication and Division Instructions... // // Extra precision multiplication def MUL8r : I <"mul", 0xF6, MRM4r>, Imp<[AL],[AX]>; // AL,AH = AL*R8 def MUL16r : I <"mul", 0xF7, MRM4r>, Imp<[AX],[AX,DX]>, OpSize; // AX,DX = AX*R16 def MUL32r : I <"mul", 0xF7, MRM4r>, Imp<[EAX],[EAX,EDX]>; // EAX,EDX = EAX*R32 def MUL8m : Im8 <"mul", 0xF6, MRM4m>, Imp<[AL],[AX]>; // AL,AH = AL*[mem8] def MUL16m : Im16<"mul", 0xF7, MRM4m>, Imp<[AX],[AX,DX]>, OpSize; // AX,DX = AX*[mem16] def MUL32m : Im32<"mul", 0xF7, MRM4m>, Imp<[EAX],[EAX,EDX]>; // EAX,EDX = EAX*[mem32] // unsigned division/remainder def DIV8r : I <"div", 0xF6, MRM6r>, Imp<[AX],[AX]>; // AX/r8 = AL,AH def DIV16r : I <"div", 0xF7, MRM6r>, Imp<[AX,DX],[AX,DX]>, OpSize; // DX:AX/r16 = AX,DX def DIV32r : I <"div", 0xF7, MRM6r>, Imp<[EAX,EDX],[EAX,EDX]>; // EDX:EAX/r32 = EAX,EDX def DIV8m : Im8 <"div", 0xF6, MRM6m>, Imp<[AX],[AX]>; // AX/[mem8] = AL,AH def DIV16m : Im16<"div", 0xF7, MRM6m>, Imp<[AX,DX],[AX,DX]>, OpSize; // DX:AX/[mem16] = AX,DX def DIV32m : Im32<"div", 0xF7, MRM6m>, Imp<[EAX,EDX],[EAX,EDX]>; // EDX:EAX/[mem32] = EAX,EDX // signed division/remainder def IDIV8r : I <"idiv",0xF6, MRM7r>, Imp<[AX],[AX]>; // AX/r8 = AL,AH def IDIV16r: I <"idiv",0xF7, MRM7r>, Imp<[AX,DX],[AX,DX]>, OpSize; // DX:AX/r16 = AX,DX def IDIV32r: I <"idiv",0xF7, MRM7r>, Imp<[EAX,EDX],[EAX,EDX]>; // EDX:EAX/r32 = EAX,EDX def IDIV8m : Im8 <"idiv",0xF6, MRM7m>, Imp<[AX],[AX]>; // AX/[mem8] = AL,AH def IDIV16m: Im16<"idiv",0xF7, MRM7m>, Imp<[AX,DX],[AX,DX]>, OpSize; // DX:AX/[mem16] = AX,DX def IDIV32m: Im32<"idiv",0xF7, MRM7m>, Imp<[EAX,EDX],[EAX,EDX]>; // EDX:EAX/[mem32] = EAX,EDX // Sign-extenders for division def CBW : I<"cbw", 0x98, RawFrm >, Imp<[AL],[AH]>; // AX = signext(AL) def CWD : I<"cwd", 0x99, RawFrm >, Imp<[AX],[DX]>; // DX:AX = signext(AX) def CDQ : I<"cdq", 0x99, RawFrm >, Imp<[EAX],[EDX]>; // EDX:EAX = signext(EAX) //===----------------------------------------------------------------------===// // Two address Instructions... // let isTwoAddress = 1 in { // Conditional moves def CMOVB16rr : I <"cmovb", 0x42, MRMSrcReg>, TB, OpSize; // if , TB, OpSize; // if , TB; // if , TB; // if , TB, OpSize; // if >=u, R16 = R16 def CMOVAE16rm: Im16<"cmovae", 0x43, MRMSrcMem>, TB, OpSize; // if >=u, R16 = [mem16] def CMOVAE32rr: I <"cmovae", 0x43, MRMSrcReg>, TB; // if >=u, R32 = R32 def CMOVAE32rm: Im32<"cmovae", 0x43, MRMSrcMem>, TB; // if >=u, R32 = [mem32] def CMOVE16rr : I <"cmove", 0x44, MRMSrcReg>, TB, OpSize; // if ==, R16 = R16 def CMOVE16rm : Im16<"cmove", 0x44, MRMSrcMem>, TB, OpSize; // if ==, R16 = [mem16] def CMOVE32rr : I <"cmove", 0x44, MRMSrcReg>, TB; // if ==, R32 = R32 def CMOVE32rm : Im32<"cmove", 0x44, MRMSrcMem>, TB; // if ==, R32 = [mem32] def CMOVNE16rr: I <"cmovne",0x45, MRMSrcReg>, TB, OpSize; // if !=, R16 = R16 def CMOVNE16rm: Im16<"cmovne",0x45, MRMSrcMem>, TB, OpSize; // if !=, R16 = [mem16] def CMOVNE32rr: I <"cmovne",0x45, MRMSrcReg>, TB; // if !=, R32 = R32 def CMOVNE32rm: Im32<"cmovne",0x45, MRMSrcMem>, TB; // if !=, R32 = [mem32] def CMOVBE16rr: I <"cmovbe",0x46, MRMSrcReg>, TB, OpSize; // if <=u, R16 = R16 def CMOVBE16rm: Im16<"cmovbe",0x46, MRMSrcMem>, TB, OpSize; // if <=u, R16 = [mem16] def CMOVBE32rr: I <"cmovbe",0x46, MRMSrcReg>, TB; // if <=u, R32 = R32 def CMOVBE32rm: Im32<"cmovbe",0x46, MRMSrcMem>, TB; // if <=u, R32 = [mem32] def CMOVA16rr : I <"cmova", 0x47, MRMSrcReg>, TB, OpSize; // if >u, R16 = R16 def CMOVA16rm : Im16<"cmova", 0x47, MRMSrcMem>, TB, OpSize; // if >u, R16 = [mem16] def CMOVA32rr : I <"cmova", 0x47, MRMSrcReg>, TB; // if >u, R32 = R32 def CMOVA32rm : Im32<"cmova", 0x47, MRMSrcMem>, TB; // if >u, R32 = [mem32] def CMOVS16rr : I <"cmovs", 0x48, MRMSrcReg>, TB, OpSize; // if signed, R16 = R16 def CMOVS16rm : Im16<"cmovs", 0x48, MRMSrcMem>, TB, OpSize; // if signed, R16 = [mem16] def CMOVS32rr : I <"cmovs", 0x48, MRMSrcReg>, TB; // if signed, R32 = R32 def CMOVS32rm : Im32<"cmovs", 0x48, MRMSrcMem>, TB; // if signed, R32 = [mem32] def CMOVNS16rr: I <"cmovns",0x49, MRMSrcReg>, TB, OpSize; // if !signed, R16 = R16 def CMOVNS16rm: Im16<"cmovns",0x49, MRMSrcMem>, TB, OpSize; // if !signed, R16 = [mem16] def CMOVNS32rr: I <"cmovns",0x49, MRMSrcReg>, TB; // if !signed, R32 = R32 def CMOVNS32rm: Im32<"cmovns",0x49, MRMSrcMem>, TB; // if !signed, R32 = [mem32] def CMOVL16rr : I <"cmovl", 0x4C, MRMSrcReg>, TB, OpSize; // if , TB, OpSize; // if , TB; // if , TB; // if , TB, OpSize; // if >=s, R16 = R16 def CMOVGE16rm: Im16<"cmovge",0x4D, MRMSrcMem>, TB, OpSize; // if >=s, R16 = [mem16] def CMOVGE32rr: I <"cmovge",0x4D, MRMSrcReg>, TB; // if >=s, R32 = R32 def CMOVGE32rm: Im32<"cmovge",0x4D, MRMSrcMem>, TB; // if >=s, R32 = [mem32] def CMOVLE16rr: I <"cmovle",0x4E, MRMSrcReg>, TB, OpSize; // if <=s, R16 = R16 def CMOVLE16rm: Im16<"cmovle",0x4E, MRMSrcMem>, TB, OpSize; // if <=s, R16 = [mem16] def CMOVLE32rr: I <"cmovle",0x4E, MRMSrcReg>, TB; // if <=s, R32 = R32 def CMOVLE32rm: Im32<"cmovle",0x4E, MRMSrcMem>, TB; // if <=s, R32 = [mem32] def CMOVG16rr : I <"cmovg", 0x4F, MRMSrcReg>, TB, OpSize; // if >s, R16 = R16 def CMOVG16rm : Im16<"cmovg", 0x4F, MRMSrcMem>, TB, OpSize; // if >s, R16 = [mem16] def CMOVG32rr : I <"cmovg", 0x4F, MRMSrcReg>, TB; // if >s, R32 = R32 def CMOVG32rm : Im32<"cmovg", 0x4F, MRMSrcMem>, TB; // if >s, R32 = [mem32] // unary instructions def NEG8r : I <"neg", 0xF6, MRM3r>; // R8 = -R8 = 0-R8 def NEG16r : I <"neg", 0xF7, MRM3r>, OpSize; // R16 = -R16 = 0-R16 def NEG32r : I <"neg", 0xF7, MRM3r>; // R32 = -R32 = 0-R32 def NEG8m : Im8 <"neg", 0xF6, MRM3m>; // [mem8] = -[mem8] = 0-[mem8] def NEG16m : Im16<"neg", 0xF7, MRM3m>, OpSize; // [mem16] = -[mem16] = 0-[mem16] def NEG32m : Im32<"neg", 0xF7, MRM3m>; // [mem32] = -[mem32] = 0-[mem32] def NOT8r : I <"not", 0xF6, MRM2r>; // R8 = ~R8 = R8^-1 def NOT16r : I <"not", 0xF7, MRM2r>, OpSize; // R16 = ~R16 = R16^-1 def NOT32r : I <"not", 0xF7, MRM2r>; // R32 = ~R32 = R32^-1 def NOT8m : Im8 <"not", 0xF6, MRM2m>; // [mem8] = ~[mem8] = [mem8^-1] def NOT16m : Im16<"not", 0xF7, MRM2m>, OpSize; // [mem16] = ~[mem16] = [mem16^-1] def NOT32m : Im32<"not", 0xF7, MRM2m>; // [mem32] = ~[mem32] = [mem32^-1] def INC8r : I <"inc", 0xFE, MRM0r>; // ++R8 def INC16r : I <"inc", 0xFF, MRM0r>, OpSize; // ++R16 def INC32r : I <"inc", 0xFF, MRM0r>; // ++R32 def INC8m : Im8 <"inc", 0xFE, MRM0m>; // ++R8 def INC16m : Im16<"inc", 0xFF, MRM0m>, OpSize; // ++R16 def INC32m : Im32<"inc", 0xFF, MRM0m>; // ++R32 def DEC8r : I <"dec", 0xFE, MRM1r>; // --R8 def DEC16r : I <"dec", 0xFF, MRM1r>, OpSize; // --R16 def DEC32r : I <"dec", 0xFF, MRM1r>; // --R32 def DEC8m : Im8 <"dec", 0xFE, MRM1m>; // --[mem8] def DEC16m : Im16<"dec", 0xFF, MRM1m>, OpSize; // --[mem16] def DEC32m : Im32<"dec", 0xFF, MRM1m>; // --[mem32] // Logical operators... def AND8rr : I <"and", 0x20, MRMDestReg>, Pattern<(set R8 , (and R8 , R8 ))>; def AND16rr : I <"and", 0x21, MRMDestReg>, OpSize, Pattern<(set R16, (and R16, R16))>; def AND32rr : I <"and", 0x21, MRMDestReg>, Pattern<(set R32, (and R32, R32))>; def AND8mr : Im8 <"and", 0x20, MRMDestMem>; // [mem8] &= R8 def AND16mr : Im16 <"and", 0x21, MRMDestMem>, OpSize; // [mem16] &= R16 def AND32mr : Im32 <"and", 0x21, MRMDestMem>; // [mem32] &= R32 def AND8rm : Im8 <"and", 0x22, MRMSrcMem >; // R8 &= [mem8] def AND16rm : Im16 <"and", 0x23, MRMSrcMem >, OpSize; // R16 &= [mem16] def AND32rm : Im32 <"and", 0x23, MRMSrcMem >; // R32 &= [mem32] def AND8ri : Ii8 <"and", 0x80, MRM4r >, Pattern<(set R8 , (and R8 , imm))>; def AND16ri : Ii16 <"and", 0x81, MRM4r >, OpSize, Pattern<(set R16, (and R16, imm))>; def AND32ri : Ii32 <"and", 0x81, MRM4r >, Pattern<(set R32, (and R32, imm))>; def AND8mi : Im8i8 <"and", 0x80, MRM4m >; // [mem8] &= imm8 def AND16mi : Im16i16<"and", 0x81, MRM4m >, OpSize; // [mem16] &= imm16 def AND32mi : Im32i32<"and", 0x81, MRM4m >; // [mem32] &= imm32 def AND16ri8 : Ii8 <"and", 0x83, MRM4r >, OpSize; // R16 &= imm8 def AND32ri8 : Ii8 <"and", 0x83, MRM4r >; // R32 &= imm8 def AND16mi8 : Im16i8<"and", 0x83, MRM4m >, OpSize; // [mem16] &= imm8 def AND32mi8 : Im32i8<"and", 0x83, MRM4m >; // [mem32] &= imm8 def OR8rr : I <"or" , 0x08, MRMDestReg>, Pattern<(set R8 , (or R8 , R8 ))>; def OR16rr : I <"or" , 0x09, MRMDestReg>, OpSize, Pattern<(set R16, (or R16, R16))>; def OR32rr : I <"or" , 0x09, MRMDestReg>, Pattern<(set R32, (or R32, R32))>; def OR8mr : Im8 <"or" , 0x08, MRMDestMem>; // [mem8] |= R8 def OR16mr : Im16 <"or" , 0x09, MRMDestMem>, OpSize; // [mem16] |= R16 def OR32mr : Im32 <"or" , 0x09, MRMDestMem>; // [mem32] |= R32 def OR8rm : Im8 <"or" , 0x0A, MRMSrcMem >; // R8 |= [mem8] def OR16rm : Im16 <"or" , 0x0B, MRMSrcMem >, OpSize; // R16 |= [mem16] def OR32rm : Im32 <"or" , 0x0B, MRMSrcMem >; // R32 |= [mem32] def OR8ri : Ii8 <"or" , 0x80, MRM1r >, Pattern<(set R8 , (or R8 , imm))>; def OR16ri : Ii16 <"or" , 0x81, MRM1r >, OpSize, Pattern<(set R16, (or R16, imm))>; def OR32ri : Ii32 <"or" , 0x81, MRM1r >, Pattern<(set R32, (or R32, imm))>; def OR8mi : Im8i8 <"or" , 0x80, MRM1m >; // [mem8] |= imm8 def OR16mi : Im16i16<"or" , 0x81, MRM1m >, OpSize; // [mem16] |= imm16 def OR32mi : Im32i32<"or" , 0x81, MRM1m >; // [mem32] |= imm32 def OR16ri8 : Ii8 <"or" , 0x83, MRM1r >, OpSize; // R16 |= imm8 def OR32ri8 : Ii8 <"or" , 0x83, MRM1r >; // R32 |= imm8 def OR16mi8 : Im16i8<"or" , 0x83, MRM1m >, OpSize; // [mem16] |= imm8 def OR32mi8 : Im32i8<"or" , 0x83, MRM1m >; // [mem32] |= imm8 def XOR8rr : I <"xor", 0x30, MRMDestReg>, Pattern<(set R8 , (xor R8 , R8 ))>; def XOR16rr : I <"xor", 0x31, MRMDestReg>, OpSize, Pattern<(set R16, (xor R16, R16))>; def XOR32rr : I <"xor", 0x31, MRMDestReg>, Pattern<(set R32, (xor R32, R32))>; def XOR8mr : Im8 <"xor", 0x30, MRMDestMem>; // [mem8] ^= R8 def XOR16mr : Im16 <"xor", 0x31, MRMDestMem>, OpSize; // [mem16] ^= R16 def XOR32mr : Im32 <"xor", 0x31, MRMDestMem>; // [mem32] ^= R32 def XOR8rm : Im8 <"xor", 0x32, MRMSrcMem >; // R8 ^= [mem8] def XOR16rm : Im16 <"xor", 0x33, MRMSrcMem >, OpSize; // R16 ^= [mem16] def XOR32rm : Im32 <"xor", 0x33, MRMSrcMem >; // R32 ^= [mem32] def XOR8ri : Ii8 <"xor", 0x80, MRM6r >, Pattern<(set R8 , (xor R8 , imm))>; def XOR16ri : Ii16 <"xor", 0x81, MRM6r >, OpSize, Pattern<(set R16, (xor R16, imm))>; def XOR32ri : Ii32 <"xor", 0x81, MRM6r >, Pattern<(set R32, (xor R32, imm))>; def XOR8mi : Im8i8 <"xor", 0x80, MRM6m >; // [mem8] ^= R8 def XOR16mi : Im16i16<"xor", 0x81, MRM6m >, OpSize; // [mem16] ^= R16 def XOR32mi : Im32i32<"xor", 0x81, MRM6m >; // [mem32] ^= R32 def XOR16ri8 : Ii8 <"xor", 0x83, MRM6r >, OpSize; // R16 ^= imm8 def XOR32ri8 : Ii8 <"xor", 0x83, MRM6r >; // R32 ^= imm8 def XOR16mi8 : Im16i8<"xor", 0x83, MRM6m >, OpSize; // [mem16] ^= imm8 def XOR32mi8 : Im32i8<"xor", 0x83, MRM6m >; // [mem32] ^= imm8 // Shift instructions // FIXME: provide shorter instructions when imm8 == 1 def SHL8rCL : I <"shl", 0xD2, MRM4r > , UsesCL; // R8 <<= cl def SHL16rCL : I <"shl", 0xD3, MRM4r >, OpSize, UsesCL; // R16 <<= cl def SHL32rCL : I <"shl", 0xD3, MRM4r > , UsesCL; // R32 <<= cl def SHL8mCL : Im8 <"shl", 0xD2, MRM4m > , UsesCL; // [mem8] <<= cl def SHL16mCL : Im16 <"shl", 0xD3, MRM4m >, OpSize, UsesCL; // [mem16] <<= cl def SHL32mCL : Im32 <"shl", 0xD3, MRM4m > , UsesCL; // [mem32] <<= cl def SHL8ri : Ii8 <"shl", 0xC0, MRM4r >; // R8 <<= imm8 def SHL16ri : Ii8 <"shl", 0xC1, MRM4r >, OpSize; // R16 <<= imm8 def SHL32ri : Ii8 <"shl", 0xC1, MRM4r >; // R32 <<= imm8 def SHL8mi : Im8i8 <"shl", 0xC0, MRM4m >; // [mem8] <<= imm8 def SHL16mi : Im16i8<"shl", 0xC1, MRM4m >, OpSize; // [mem16] <<= imm8 def SHL32mi : Im32i8<"shl", 0xC1, MRM4m >; // [mem32] <<= imm8 def SHR8rCL : I <"shr", 0xD2, MRM5r > , UsesCL; // R8 >>= cl def SHR16rCL : I <"shr", 0xD3, MRM5r >, OpSize, UsesCL; // R16 >>= cl def SHR32rCL : I <"shr", 0xD3, MRM5r > , UsesCL; // R32 >>= cl def SHR8mCL : Im8 <"shr", 0xD2, MRM5m > , UsesCL; // [mem8] >>= cl def SHR16mCL : Im16 <"shr", 0xD3, MRM5m >, OpSize, UsesCL; // [mem16] >>= cl def SHR32mCL : Im32 <"shr", 0xD3, MRM5m > , UsesCL; // [mem32] >>= cl def SHR8ri : Ii8 <"shr", 0xC0, MRM5r >; // R8 >>= imm8 def SHR16ri : Ii8 <"shr", 0xC1, MRM5r >, OpSize; // R16 >>= imm8 def SHR32ri : Ii8 <"shr", 0xC1, MRM5r >; // R32 >>= imm8 def SHR8mi : Im8i8 <"shr", 0xC0, MRM5m >; // [mem8] >>= imm8 def SHR16mi : Im16i8<"shr", 0xC1, MRM5m >, OpSize; // [mem16] >>= imm8 def SHR32mi : Im32i8<"shr", 0xC1, MRM5m >; // [mem32] >>= imm8 def SAR8rCL : I <"sar", 0xD2, MRM7r > , UsesCL; // R8 >>>= cl def SAR16rCL : I <"sar", 0xD3, MRM7r >, OpSize, UsesCL; // R16 >>>= cl def SAR32rCL : I <"sar", 0xD3, MRM7r > , UsesCL; // R32 >>>= cl def SAR8mCL : Im8 <"sar", 0xD2, MRM7m > , UsesCL; // [mem8] >>>= cl def SAR16mCL : Im16 <"sar", 0xD3, MRM7m >, OpSize, UsesCL; // [mem16] >>>= cl def SAR32mCL : Im32 <"sar", 0xD3, MRM7m > , UsesCL; // [mem32] >>>= cl def SAR8ri : Ii8 <"sar", 0xC0, MRM7r >; // R8 >>>= imm8 def SAR16ri : Ii8 <"sar", 0xC1, MRM7r >, OpSize; // R16 >>>= imm8 def SAR32ri : Ii8 <"sar", 0xC1, MRM7r >; // R32 >>>= imm8 def SAR8mi : Im8i8 <"sar", 0xC0, MRM7m >; // [mem8] >>>= imm8 def SAR16mi : Im16i8<"sar", 0xC1, MRM7m >, OpSize; // [mem16] >>>= imm8 def SAR32mi : Im32i8<"sar", 0xC1, MRM7m >; // [mem32] >>>= imm8 def SHLD32rrCL : I <"shld", 0xA5, MRMDestReg>, TB, UsesCL; // R32 <<= R32,R32 cl def SHLD32mrCL : Im32 <"shld", 0xA5, MRMDestMem>, TB, UsesCL; // [mem32] <<= [mem32],R32 cl def SHLD32rri8 : Ii8 <"shld", 0xA4, MRMDestReg>, TB; // R32 <<= R32,R32 imm8 def SHLD32mri8 : Im32i8<"shld", 0xA4, MRMDestMem>, TB; // [mem32] <<= [mem32],R32 imm8 def SHRD32rrCL : I <"shrd", 0xAD, MRMDestReg>, TB, UsesCL; // R32 >>= R32,R32 cl def SHRD32mrCL : Im32 <"shrd", 0xAD, MRMDestMem>, TB, UsesCL; // [mem32] >>= [mem32],R32 cl def SHRD32rri8 : Ii8 <"shrd", 0xAC, MRMDestReg>, TB; // R32 >>= R32,R32 imm8 def SHRD32mri8 : Im32i8<"shrd", 0xAC, MRMDestMem>, TB; // [mem32] >>= [mem32],R32 imm8 // Arithmetic... def ADD8rr : I <"add", 0x00, MRMDestReg>, Pattern<(set R8 , (plus R8 , R8 ))>; def ADD16rr : I <"add", 0x01, MRMDestReg>, OpSize, Pattern<(set R16, (plus R16, R16))>; def ADD32rr : I <"add", 0x01, MRMDestReg>, Pattern<(set R32, (plus R32, R32))>; def ADD8mr : Im8 <"add", 0x00, MRMDestMem>; // [mem8] += R8 def ADD16mr : Im16 <"add", 0x01, MRMDestMem>, OpSize; // [mem16] += R16 def ADD32mr : Im32 <"add", 0x01, MRMDestMem>; // [mem32] += R32 def ADD8rm : Im8 <"add", 0x02, MRMSrcMem >; // R8 += [mem8] def ADD16rm : Im16 <"add", 0x03, MRMSrcMem >, OpSize; // R16 += [mem16] def ADD32rm : Im32 <"add", 0x03, MRMSrcMem >; // R32 += [mem32] def ADD8ri : Ii8 <"add", 0x80, MRM0r >, Pattern<(set R8 , (plus R8 , imm))>; def ADD16ri : Ii16 <"add", 0x81, MRM0r >, OpSize, Pattern<(set R16, (plus R16, imm))>; def ADD32ri : Ii32 <"add", 0x81, MRM0r >, Pattern<(set R32, (plus R32, imm))>; def ADD8mi : Im8i8 <"add", 0x80, MRM0m >; // [mem8] += I8 def ADD16mi : Im16i16<"add", 0x81, MRM0m >, OpSize; // [mem16] += I16 def ADD32mi : Im32i32<"add", 0x81, MRM0m >; // [mem32] += I32 def ADD16ri8 : Ii8 <"add", 0x83, MRM0r >, OpSize; // ADDri with sign extended 8 bit imm def ADD32ri8 : Ii8 <"add", 0x83, MRM0r >; def ADD16mi8 : Im16i8<"add", 0x83, MRM0m >, OpSize; // [mem16] += I8 def ADD32mi8 : Im32i8<"add", 0x83, MRM0m >; // [mem32] += I8 def ADC32rr : I <"adc", 0x11, MRMDestReg>; // R32 += R32+Carry def ADC32rm : Im32 <"adc", 0x11, MRMSrcMem >; // R32 += [mem32]+Carry def ADC32mr : Im32 <"adc", 0x13, MRMDestMem>; // [mem32] += R32+Carry def SUB8rr : I <"sub", 0x28, MRMDestReg>, Pattern<(set R8 , (minus R8 , R8 ))>; def SUB16rr : I <"sub", 0x29, MRMDestReg>, OpSize, Pattern<(set R16, (minus R16, R16))>; def SUB32rr : I <"sub", 0x29, MRMDestReg>, Pattern<(set R32, (minus R32, R32))>; def SUB8mr : Im8 <"sub", 0x28, MRMDestMem>; // [mem8] -= R8 def SUB16mr : Im16 <"sub", 0x29, MRMDestMem>, OpSize; // [mem16] -= R16 def SUB32mr : Im32 <"sub", 0x29, MRMDestMem>; // [mem32] -= R32 def SUB8rm : Im8 <"sub", 0x2A, MRMSrcMem >; // R8 -= [mem8] def SUB16rm : Im16 <"sub", 0x2B, MRMSrcMem >, OpSize; // R16 -= [mem16] def SUB32rm : Im32 <"sub", 0x2B, MRMSrcMem >; // R32 -= [mem32] def SUB8ri : Ii8 <"sub", 0x80, MRM5r >, Pattern<(set R8 , (minus R8 , imm))>; def SUB16ri : Ii16 <"sub", 0x81, MRM5r >, OpSize, Pattern<(set R16, (minus R16, imm))>; def SUB32ri : Ii32 <"sub", 0x81, MRM5r >, Pattern<(set R32, (minus R32, imm))>; def SUB8mi : Im8i8 <"sub", 0x80, MRM5m >; // [mem8] -= I8 def SUB16mi : Im16i16<"sub", 0x81, MRM5m >, OpSize; // [mem16] -= I16 def SUB32mi : Im32i32<"sub", 0x81, MRM5m >; // [mem32] -= I32 def SUB16ri8 : Ii8 <"sub", 0x83, MRM5r >, OpSize; def SUB32ri8 : Ii8 <"sub", 0x83, MRM5r >; def SUB16mi8 : Im16i8<"sub", 0x83, MRM5m >, OpSize; // [mem16] -= I8 def SUB32mi8 : Im32i8<"sub", 0x83, MRM5m >; // [mem32] -= I8 def SBB32rr : I <"sbb", 0x19, MRMDestReg>; // R32 -= R32+Borrow def SBB32rm : Im32 <"sbb", 0x19, MRMSrcMem >; // R32 -= [mem32]+Borrow def SBB32mr : Im32 <"sbb", 0x1B, MRMDestMem>; // [mem32] -= R32+Borrow def IMUL16rr : I <"imul", 0xAF, MRMSrcReg>, TB, OpSize, Pattern<(set R16, (times R16, R16))>; def IMUL32rr : I <"imul", 0xAF, MRMSrcReg>, TB , Pattern<(set R32, (times R32, R32))>; def IMUL16rm : Im16 <"imul", 0xAF, MRMSrcMem>, TB, OpSize; def IMUL32rm : Im32 <"imul", 0xAF, MRMSrcMem>, TB ; } // end Two Address instructions // These are suprisingly enough not two address instructions! def IMUL16rri : Ii16 <"imul", 0x69, MRMSrcReg>, OpSize; // R16 = R16*I16 def IMUL32rri : Ii32 <"imul", 0x69, MRMSrcReg>; // R32 = R32*I32 def IMUL16rri8 : Ii8 <"imul", 0x6B, MRMSrcReg>, OpSize; // R16 = R16*I8 def IMUL32rri8 : Ii8 <"imul", 0x6B, MRMSrcReg>; // R32 = R32*I8 def IMUL16rmi : Im16i16<"imul",0x69, MRMSrcMem>, OpSize; // R16 = [mem16]*I16 def IMUL32rmi : Im32i32<"imul",0x69, MRMSrcMem>; // R32 = [mem32]*I32 def IMUL16rmi8 : Im16i8<"imul", 0x6B, MRMSrcMem>, OpSize; // R16 = [mem16]*I8 def IMUL32rmi8 : Im32i8<"imul", 0x6B, MRMSrcMem>; // R32 = [mem32]*I8 //===----------------------------------------------------------------------===// // Test instructions are just like AND, except they don't generate a result. def TEST8rr : I <"test", 0x84, MRMDestReg>; // flags = R8 & R8 def TEST16rr : I <"test", 0x85, MRMDestReg>, OpSize; // flags = R16 & R16 def TEST32rr : I <"test", 0x85, MRMDestReg>; // flags = R32 & R32 def TEST8mr : Im8 <"test", 0x84, MRMDestMem>; // flags = [mem8] & R8 def TEST16mr : Im16 <"test", 0x85, MRMDestMem>, OpSize; // flags = [mem16] & R16 def TEST32mr : Im32 <"test", 0x85, MRMDestMem>; // flags = [mem32] & R32 def TEST8rm : Im8 <"test", 0x84, MRMSrcMem >; // flags = R8 & [mem8] def TEST16rm : Im16 <"test", 0x85, MRMSrcMem >, OpSize; // flags = R16 & [mem16] def TEST32rm : Im32 <"test", 0x85, MRMSrcMem >; // flags = R32 & [mem32] def TEST8ri : Ii8 <"test", 0xF6, MRM0r >; // flags = R8 & imm8 def TEST16ri : Ii16 <"test", 0xF7, MRM0r >, OpSize; // flags = R16 & imm16 def TEST32ri : Ii32 <"test", 0xF7, MRM0r >; // flags = R32 & imm32 def TEST8mi : Im8i8 <"test", 0xF6, MRM0m >; // flags = [mem8] & imm8 def TEST16mi : Im16i16<"test", 0xF7, MRM0m >, OpSize; // flags = [mem16] & imm16 def TEST32mi : Im32i32<"test", 0xF7, MRM0m >; // flags = [mem32] & imm32 // Condition code ops, incl. set if equal/not equal/... def SAHF : I <"sahf" , 0x9E, RawFrm>, Imp<[AH],[]>; // flags = AH def LAHF : I <"lahf" , 0x9F, RawFrm>, Imp<[],[AH]>; // AH = flags def SETBr : I <"setb" , 0x92, MRM0r>, TB; // R8 = < unsign def SETBm : Im8<"setb" , 0x92, MRM0m>, TB; // [mem8] = < unsign def SETAEr : I <"setae", 0x93, MRM0r>, TB; // R8 = >= unsign def SETAEm : Im8<"setae", 0x93, MRM0m>, TB; // [mem8] = >= unsign def SETEr : I <"sete" , 0x94, MRM0r>, TB; // R8 = == def SETEm : Im8<"sete" , 0x94, MRM0m>, TB; // [mem8] = == def SETNEr : I <"setne", 0x95, MRM0r>, TB; // R8 = != def SETNEm : Im8<"setne", 0x95, MRM0m>, TB; // [mem8] = != def SETBEr : I <"setbe", 0x96, MRM0r>, TB; // R8 = <= unsign def SETBEm : Im8<"setbe", 0x96, MRM0m>, TB; // [mem8] = <= unsign def SETAr : I <"seta" , 0x97, MRM0r>, TB; // R8 = > signed def SETAm : Im8<"seta" , 0x97, MRM0m>, TB; // [mem8] = > signed def SETSr : I <"sets" , 0x98, MRM0r>, TB; // R8 = def SETSm : Im8<"sets" , 0x98, MRM0m>, TB; // [mem8] = def SETNSr : I <"setns", 0x99, MRM0r>, TB; // R8 = ! def SETNSm : Im8<"setns", 0x99, MRM0m>, TB; // [mem8] = ! def SETLr : I <"setl" , 0x9C, MRM0r>, TB; // R8 = < signed def SETLm : Im8<"setl" , 0x9C, MRM0m>, TB; // [mem8] = < signed def SETGEr : I <"setge", 0x9D, MRM0r>, TB; // R8 = >= signed def SETGEm : Im8<"setge", 0x9D, MRM0m>, TB; // [mem8] = >= signed def SETLEr : I <"setle", 0x9E, MRM0r>, TB; // R8 = <= signed def SETLEm : Im8<"setle", 0x9E, MRM0m>, TB; // [mem8] = <= signed def SETGr : I <"setg" , 0x9F, MRM0r>, TB; // R8 = < signed def SETGm : Im8<"setg" , 0x9F, MRM0m>, TB; // [mem8] = < signed // Integer comparisons def CMP8rr : I <"cmp", 0x38, MRMDestReg>; // compare R8, R8 def CMP16rr : I <"cmp", 0x39, MRMDestReg>, OpSize; // compare R16, R16 def CMP32rr : I <"cmp", 0x39, MRMDestReg>, // compare R32, R32 Pattern<(isVoid (unspec2 R32, R32))>; def CMP8mr : Im8 <"cmp", 0x38, MRMDestMem>; // compare [mem8], R8 def CMP16mr : Im16 <"cmp", 0x39, MRMDestMem>, OpSize; // compare [mem16], R16 def CMP32mr : Im32 <"cmp", 0x39, MRMDestMem>; // compare [mem32], R32 def CMP8rm : Im8 <"cmp", 0x3A, MRMSrcMem >; // compare R8, [mem8] def CMP16rm : Im16 <"cmp", 0x3B, MRMSrcMem >, OpSize; // compare R16, [mem16] def CMP32rm : Im32 <"cmp", 0x3B, MRMSrcMem >; // compare R32, [mem32] def CMP8ri : Ii8 <"cmp", 0x80, MRM7r >; // compare R8, imm8 def CMP16ri : Ii16 <"cmp", 0x81, MRM7r >, OpSize; // compare R16, imm16 def CMP32ri : Ii32 <"cmp", 0x81, MRM7r >; // compare R32, imm32 def CMP8mi : Im8i8 <"cmp", 0x80, MRM7m >; // compare [mem8], imm8 def CMP16mi : Im16i16<"cmp", 0x81, MRM7m >, OpSize; // compare [mem16], imm16 def CMP32mi : Im32i32<"cmp", 0x81, MRM7m >; // compare [mem32], imm32 // Sign/Zero extenders def MOVSX16rr8 : I <"movsx", 0xBE, MRMSrcReg>, TB, OpSize; // R16 = signext(R8) def MOVSX32rr8 : I <"movsx", 0xBE, MRMSrcReg>, TB; // R32 = signext(R8) def MOVSX32rr16: I <"movsx", 0xBF, MRMSrcReg>, TB; // R32 = signext(R16) def MOVSX16rm8 : Im8 <"movsx", 0xBE, MRMSrcMem>, TB, OpSize; // R16 = signext([mem8]) def MOVSX32rm8 : Im8 <"movsx", 0xBE, MRMSrcMem>, TB; // R32 = signext([mem8]) def MOVSX32rm16: Im16<"movsx", 0xBF, MRMSrcMem>, TB; // R32 = signext([mem16]) def MOVZX16rr8 : I <"movzx", 0xB6, MRMSrcReg>, TB, OpSize; // R16 = zeroext(R8) def MOVZX32rr8 : I <"movzx", 0xB6, MRMSrcReg>, TB; // R32 = zeroext(R8) def MOVZX32rr16: I <"movzx", 0xB7, MRMSrcReg>, TB; // R32 = zeroext(R16) def MOVZX16rm8 : Im8 <"movzx", 0xB6, MRMSrcMem>, TB, OpSize; // R16 = zeroext([mem8]) def MOVZX32rm8 : Im8 <"movzx", 0xB6, MRMSrcMem>, TB; // R32 = zeroext([mem8]) def MOVZX32rm16: Im16<"movzx", 0xB7, MRMSrcMem>, TB; // R32 = zeroext([mem16]) //===----------------------------------------------------------------------===// // Floating point support //===----------------------------------------------------------------------===// // FIXME: These need to indicate mod/ref sets for FP regs... & FP 'TOP' // Floating point instruction templates class FPInst o, Format F, FPFormat fp, MemType m, ImmType i> : X86Inst { let FPForm = fp; let FPFormBits = FPForm.Value; } class FPI o, Format F, FPFormat fp> : FPInst; class FPIM o, Format F, FPFormat fp, MemType m> : FPInst; class FPI16m o, Format F, FPFormat fp> : FPIM; class FPI32m o, Format F, FPFormat fp> : FPIM; class FPI64m o, Format F, FPFormat fp> : FPIM; class FPI80m o, Format F, FPFormat fp> : FPIM; // Pseudo instructions for floating point. We use these pseudo instructions // because they can be expanded by the fp spackifier into one of many different // forms of instructions for doing these operations. Until the stackifier runs, // we prefer to be abstract. def FpMOV : FPI<"FMOV", 0, Pseudo, SpecialFP>; // f1 = fmov f2 def FpADD : FPI<"FADD", 0, Pseudo, TwoArgFP>; // f1 = fadd f2, f3 def FpSUB : FPI<"FSUB", 0, Pseudo, TwoArgFP>; // f1 = fsub f2, f3 def FpMUL : FPI<"FMUL", 0, Pseudo, TwoArgFP>; // f1 = fmul f2, f3 def FpDIV : FPI<"FDIV", 0, Pseudo, TwoArgFP>; // f1 = fdiv f2, f3 def FpUCOM : FPI<"FUCOM", 0, Pseudo, TwoArgFP>; // FPSW = fucom f1, f2 def FpGETRESULT : FPI<"FGETRESULT",0, Pseudo, SpecialFP>; // FPR = ST(0) def FpSETRESULT : FPI<"FSETRESULT",0, Pseudo, SpecialFP>; // ST(0) = FPR // Floating point cmovs... let isTwoAddress = 1, Uses = [ST0], Defs = [ST0], printImplicitUsesBefore = 1 in { def FCMOVB : FPI <"fcmovb" , 0xC0, AddRegFrm, CondMovFP>, DA; // fcmovb ST(i) -> ST(0) def FCMOVBE : FPI <"fcmovbe", 0xD0, AddRegFrm, CondMovFP>, DA; // fcmovbe ST(i) -> ST(0) def FCMOVE : FPI <"fcmove" , 0xC8, AddRegFrm, CondMovFP>, DA; // fcmove ST(i) -> ST(0) def FCMOVAE : FPI <"fcmovae", 0xC0, AddRegFrm, CondMovFP>, DB; // fcmovae ST(i) -> ST(0) def FCMOVA : FPI <"fcmova" , 0xD0, AddRegFrm, CondMovFP>, DB; // fcmova ST(i) -> ST(0) def FCMOVNE : FPI <"fcmovne", 0xC8, AddRegFrm, CondMovFP>, DB; // fcmovne ST(i) -> ST(0) } // Floating point loads & stores... def FLDrr : FPI <"fld" , 0xC0, AddRegFrm, NotFP>, D9; // push(ST(i)) def FLD32m : FPI32m <"fld" , 0xD9, MRM0m , ZeroArgFP>; // load float def FLD64m : FPI64m <"fld" , 0xDD, MRM0m , ZeroArgFP>; // load double def FLD80m : FPI80m <"fld" , 0xDB, MRM5m , ZeroArgFP>; // load extended def FILD16m : FPI16m <"fild" , 0xDF, MRM0m , ZeroArgFP>; // load signed short def FILD32m : FPI32m <"fild" , 0xDB, MRM0m , ZeroArgFP>; // load signed int def FILD64m : FPI64m <"fild" , 0xDF, MRM5m , ZeroArgFP>; // load signed long def FSTrr : FPI <"fst" , 0xD0, AddRegFrm, NotFP >, DD; // ST(i) = ST(0) def FSTPrr : FPI <"fstp", 0xD8, AddRegFrm, NotFP >, DD; // ST(i) = ST(0), pop def FST32m : FPI32m <"fst" , 0xD9, MRM2m , OneArgFP>; // store float def FST64m : FPI64m <"fst" , 0xDD, MRM2m , OneArgFP>; // store double def FSTP32m : FPI32m <"fstp", 0xD9, MRM3m , OneArgFP>; // store float, pop def FSTP64m : FPI64m <"fstp", 0xDD, MRM3m , OneArgFP>; // store double, pop def FSTP80m : FPI80m <"fstp", 0xDB, MRM7m , OneArgFP>; // store extended, pop def FIST16m : FPI16m <"fist", 0xDF, MRM2m , OneArgFP>; // store signed short def FIST32m : FPI32m <"fist", 0xDB, MRM2m , OneArgFP>; // store signed int def FISTP16m : FPI16m <"fistp", 0xDF, MRM3m , NotFP >; // store signed short, pop def FISTP32m : FPI32m <"fistp", 0xDB, MRM3m , NotFP >; // store signed int, pop def FISTP64m : FPI64m <"fistpll", 0xDF, MRM7m , OneArgFP>; // store signed long, pop def FXCH : FPI <"fxch", 0xC8, AddRegFrm, NotFP>, D9; // fxch ST(i), ST(0) // Floating point constant loads... def FLD0 : FPI<"fldz", 0xEE, RawFrm, ZeroArgFP>, D9; def FLD1 : FPI<"fld1", 0xE8, RawFrm, ZeroArgFP>, D9; // Unary operations... def FCHS : FPI<"fchs", 0xE0, RawFrm, OneArgFPRW>, D9; // f1 = fchs f2 def FTST : FPI<"ftst", 0xE4, RawFrm, OneArgFP>, D9; // ftst ST(0) // Binary arithmetic operations... class FPST0rInst o> : I, D8 { list Uses = [ST0]; list Defs = [ST0]; } class FPrST0Inst o> : I, DC { bit printImplicitUsesAfter = 1; list Uses = [ST0]; } class FPrST0PInst o> : I, DE { list Uses = [ST0]; } def FADDST0r : FPST0rInst <"fadd", 0xC0>; def FADDrST0 : FPrST0Inst <"fadd", 0xC0>; def FADDPrST0 : FPrST0PInst<"faddp", 0xC0>; def FSUBRST0r : FPST0rInst <"fsubr", 0xE8>; def FSUBrST0 : FPrST0Inst <"fsub", 0xE8>; def FSUBPrST0 : FPrST0PInst<"fsubp", 0xE8>; def FSUBST0r : FPST0rInst <"fsub", 0xE0>; def FSUBRrST0 : FPrST0Inst <"fsubr", 0xE0>; def FSUBRPrST0 : FPrST0PInst<"fsubrp", 0xE0>; def FMULST0r : FPST0rInst <"fmul", 0xC8>; def FMULrST0 : FPrST0Inst <"fmul", 0xC8>; def FMULPrST0 : FPrST0PInst<"fmulp", 0xC8>; def FDIVRST0r : FPST0rInst <"fdivr", 0xF8>; def FDIVrST0 : FPrST0Inst <"fdiv", 0xF8>; def FDIVPrST0 : FPrST0PInst<"fdivp", 0xF8>; def FDIVST0r : FPST0rInst <"fdiv", 0xF0>; // ST(0) = ST(0) / ST(i) def FDIVRrST0 : FPrST0Inst <"fdivr", 0xF0>; // ST(i) = ST(0) / ST(i) def FDIVRPrST0 : FPrST0PInst<"fdivrp", 0xF0>; // ST(i) = ST(0) / ST(i), pop // Floating point compares def FUCOMr : I<"fucom" , 0xE0, AddRegFrm>, DD, Imp<[ST0],[]>; // FPSW = compare ST(0) with ST(i) def FUCOMPr : I<"fucomp" , 0xE8, AddRegFrm>, DD, Imp<[ST0],[]>; // FPSW = compare ST(0) with ST(i), pop def FUCOMPPr : I<"fucompp", 0xE9, RawFrm >, DA, Imp<[ST0],[]>; // compare ST(0) with ST(1), pop, pop // Floating point flag ops def FNSTSW8r : I <"fnstsw" , 0xE0, RawFrm>, DF, Imp<[],[AX]>; // AX = fp flags def FNSTCW16m : Im16<"fnstcw" , 0xD9, MRM7m >; // [mem16] = X87 control world def FLDCW16m : Im16<"fldcw" , 0xD9, MRM5m >; // X87 control world = [mem16] //===----------------------------------------------------------------------===// // Instruction Expanders // def RET_R32 : Expander<(ret R32:$reg), [(MOV32rr EAX, R32:$reg), (RET)]>; // FIXME: This should eventually just be implemented by defining a frameidx as a // value address for a load. def LOAD_FI16 : Expander<(set R16:$dest, (load frameidx:$fi)), [(MOV16rm R16:$dest, frameidx:$fi, 1, 0/*NoReg*/, 0)]>; def LOAD_FI32 : Expander<(set R32:$dest, (load frameidx:$fi)), [(MOV32rm R32:$dest, frameidx:$fi, 1, 0/*NoReg*/, 0)]>; def LOAD_R16 : Expander<(set R16:$dest, (load R32:$src)), [(MOV16rm R16:$dest, R32:$src, 1, 0/*NoReg*/, 0)]>; def LOAD_R32 : Expander<(set R32:$dest, (load R32:$src)), [(MOV32rm R32:$dest, R32:$src, 1, 0/*NoReg*/, 0)]>; def BR_EQ : Expander<(brcond (seteq R32:$a1, R32:$a2), basicblock:$d1, basicblock:$d2), [(CMP32rr R32:$a1, R32:$a2), (JE basicblock:$d1), (JMP basicblock:$d2)]>;