//===-- llvm/DerivedTypes.h - Classes for handling data types ---*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the declarations of classes that represent "derived // types". These are things like "arrays of x" or "structure of x, y, z" or // "method returning x taking (y,z) as parameters", etc... // // The implementations of these classes live in the Type.cpp file. // //===----------------------------------------------------------------------===// #ifndef LLVM_DERIVED_TYPES_H #define LLVM_DERIVED_TYPES_H #include "llvm/Type.h" #include namespace llvm { template class TypeMap; class FunctionValType; class ArrayValType; class StructValType; class PointerValType; class DerivedType : public Type, public AbstractTypeUser { /// RefCount - This counts the number of PATypeHolders that are pointing to /// this type. When this number falls to zero, if the type is abstract and /// has no AbstractTypeUsers, the type is deleted. /// mutable unsigned RefCount; // AbstractTypeUsers - Implement a list of the users that need to be notified // if I am a type, and I get resolved into a more concrete type. // ///// FIXME: kill mutable nonsense when Types are not const mutable std::vector AbstractTypeUsers; protected: DerivedType(PrimitiveID id) : Type("", id), RefCount(0) {} ~DerivedType() { assert(AbstractTypeUsers.empty()); } /// notifyUsesThatTypeBecameConcrete - Notify AbstractTypeUsers of this type /// that the current type has transitioned from being abstract to being /// concrete. /// void notifyUsesThatTypeBecameConcrete(); // dropAllTypeUses - When this (abstract) type is resolved to be equal to // another (more concrete) type, we must eliminate all references to other // types, to avoid some circular reference problems. virtual void dropAllTypeUses() = 0; public: //===--------------------------------------------------------------------===// // Abstract Type handling methods - These types have special lifetimes, which // are managed by (add|remove)AbstractTypeUser. See comments in // AbstractTypeUser.h for more information. // addAbstractTypeUser - Notify an abstract type that there is a new user of // it. This function is called primarily by the PATypeHandle class. // void addAbstractTypeUser(AbstractTypeUser *U) const { assert(isAbstract() && "addAbstractTypeUser: Current type not abstract!"); AbstractTypeUsers.push_back(U); } // removeAbstractTypeUser - Notify an abstract type that a user of the class // no longer has a handle to the type. This function is called primarily by // the PATypeHandle class. When there are no users of the abstract type, it // is annihilated, because there is no way to get a reference to it ever // again. // void removeAbstractTypeUser(AbstractTypeUser *U) const; // refineAbstractTypeTo - This function is used to when it is discovered that // the 'this' abstract type is actually equivalent to the NewType specified. // This causes all users of 'this' to switch to reference the more concrete // type NewType and for 'this' to be deleted. // void refineAbstractTypeTo(const Type *NewType); void addRef() const { assert(isAbstract() && "Cannot add a reference to a non-abstract type!"); ++RefCount; } void dropRef() const { assert(isAbstract() && "Cannot drop a refernce to a non-abstract type!"); assert(RefCount && "No objects are currently referencing this object!"); // If this is the last PATypeHolder using this object, and there are no // PATypeHandles using it, the type is dead, delete it now. if (--RefCount == 0 && AbstractTypeUsers.empty()) delete this; } void dump() const { Value::dump(); } // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const DerivedType *T) { return true; } static inline bool classof(const Type *T) { return T->isDerivedType(); } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; class FunctionType : public DerivedType { friend class TypeMap; PATypeHandle ResultType; std::vector ParamTys; bool isVarArgs; FunctionType(const FunctionType &); // Do not implement const FunctionType &operator=(const FunctionType &); // Do not implement protected: // This should really be private, but it squelches a bogus warning // from GCC to make them protected: warning: `class FunctionType' only // defines private constructors and has no friends // Private ctor - Only can be created by a static member... FunctionType(const Type *Result, const std::vector &Params, bool IsVarArgs); // dropAllTypeUses - When this (abstract) type is resolved to be equal to // another (more concrete) type, we must eliminate all references to other // types, to avoid some circular reference problems. virtual void dropAllTypeUses(); public: /// FunctionType::get - This static method is the primary way of constructing /// a FunctionType static FunctionType *get(const Type *Result, const std::vector &Params, bool isVarArg); inline bool isVarArg() const { return isVarArgs; } inline const Type *getReturnType() const { return ResultType; } typedef std::vector::const_iterator param_iterator; param_iterator param_begin() const { return ParamTys.begin(); } param_iterator param_end() const { return ParamTys.end(); } // Parameter type accessors... const Type *getParamType(unsigned i) const { return ParamTys[i]; } // getNumParams - Return the number of fixed parameters this function type // requires. This does not consider varargs. // unsigned getNumParams() const { return ParamTys.size(); } virtual const Type *getContainedType(unsigned i) const { return i == 0 ? ResultType.get() : ParamTys[i-1].get(); } virtual unsigned getNumContainedTypes() const { return ParamTys.size()+1; } // Implement the AbstractTypeUser interface. virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy); virtual void typeBecameConcrete(const DerivedType *AbsTy); // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const FunctionType *T) { return true; } static inline bool classof(const Type *T) { return T->getPrimitiveID() == FunctionTyID; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; // CompositeType - Common super class of ArrayType, StructType, and PointerType // class CompositeType : public DerivedType { protected: inline CompositeType(PrimitiveID id) : DerivedType(id) { } public: // getTypeAtIndex - Given an index value into the type, return the type of the // element. // virtual const Type *getTypeAtIndex(const Value *V) const = 0; virtual bool indexValid(const Value *V) const = 0; // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const CompositeType *T) { return true; } static inline bool classof(const Type *T) { return T->getPrimitiveID() == ArrayTyID || T->getPrimitiveID() == StructTyID || T->getPrimitiveID() == PointerTyID; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; class StructType : public CompositeType { friend class TypeMap; std::vector ETypes; // Element types of struct StructType(const StructType &); // Do not implement const StructType &operator=(const StructType &); // Do not implement protected: // This should really be private, but it squelches a bogus warning // from GCC to make them protected: warning: `class StructType' only // defines private constructors and has no friends // Private ctor - Only can be created by a static member... StructType(const std::vector &Types); // dropAllTypeUses - When this (abstract) type is resolved to be equal to // another (more concrete) type, we must eliminate all references to other // types, to avoid some circular reference problems. virtual void dropAllTypeUses(); public: /// StructType::get - This static method is the primary way to create a /// StructType. static StructType *get(const std::vector &Params); // Iterator access to the elements typedef std::vector::const_iterator element_iterator; element_iterator element_begin() const { return ETypes.begin(); } element_iterator element_end() const { return ETypes.end(); } // Random access to the elements unsigned getNumElements() const { return ETypes.size(); } const Type *getElementType(unsigned N) const { assert(N < ETypes.size() && "Element number out of range!"); return ETypes[N]; } virtual const Type *getContainedType(unsigned i) const { return ETypes[i].get(); } virtual unsigned getNumContainedTypes() const { return ETypes.size(); } // getTypeAtIndex - Given an index value into the type, return the type of the // element. For a structure type, this must be a constant value... // virtual const Type *getTypeAtIndex(const Value *V) const ; virtual bool indexValid(const Value *V) const; // Implement the AbstractTypeUser interface. virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy); virtual void typeBecameConcrete(const DerivedType *AbsTy); // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const StructType *T) { return true; } static inline bool classof(const Type *T) { return T->getPrimitiveID() == StructTyID; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; // SequentialType - This is the superclass of the array and pointer type // classes. Both of these represent "arrays" in memory. The array type // represents a specifically sized array, pointer types are unsized/unknown size // arrays. SequentialType holds the common features of both, which stem from // the fact that both lay their components out in memory identically. // class SequentialType : public CompositeType { SequentialType(const SequentialType &); // Do not implement! const SequentialType &operator=(const SequentialType &); // Do not implement! protected: PATypeHandle ElementType; SequentialType(PrimitiveID TID, const Type *ElType) : CompositeType(TID), ElementType(PATypeHandle(ElType, this)) { } public: inline const Type *getElementType() const { return ElementType; } virtual const Type *getContainedType(unsigned i) const { return ElementType.get(); } virtual unsigned getNumContainedTypes() const { return 1; } // getTypeAtIndex - Given an index value into the type, return the type of the // element. For sequential types, there is only one subtype... // virtual const Type *getTypeAtIndex(const Value *V) const { return ElementType.get(); } virtual bool indexValid(const Value *V) const { return V->getType()->isInteger(); } // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SequentialType *T) { return true; } static inline bool classof(const Type *T) { return T->getPrimitiveID() == ArrayTyID || T->getPrimitiveID() == PointerTyID; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; class ArrayType : public SequentialType { friend class TypeMap; unsigned NumElements; ArrayType(const ArrayType &); // Do not implement const ArrayType &operator=(const ArrayType &); // Do not implement protected: // This should really be private, but it squelches a bogus warning // from GCC to make them protected: warning: `class ArrayType' only // defines private constructors and has no friends // Private ctor - Only can be created by a static member... ArrayType(const Type *ElType, unsigned NumEl); // dropAllTypeUses - When this (abstract) type is resolved to be equal to // another (more concrete) type, we must eliminate all references to other // types, to avoid some circular reference problems. virtual void dropAllTypeUses(); public: /// ArrayType::get - This static method is the primary way to construct an /// ArrayType static ArrayType *get(const Type *ElementType, unsigned NumElements); inline unsigned getNumElements() const { return NumElements; } // Implement the AbstractTypeUser interface. virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy); virtual void typeBecameConcrete(const DerivedType *AbsTy); // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const ArrayType *T) { return true; } static inline bool classof(const Type *T) { return T->getPrimitiveID() == ArrayTyID; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; class PointerType : public SequentialType { friend class TypeMap; PointerType(const PointerType &); // Do not implement const PointerType &operator=(const PointerType &); // Do not implement protected: // This should really be private, but it squelches a bogus warning // from GCC to make them protected: warning: `class PointerType' only // defines private constructors and has no friends // Private ctor - Only can be created by a static member... PointerType(const Type *ElType); // dropAllTypeUses - When this (abstract) type is resolved to be equal to // another (more concrete) type, we must eliminate all references to other // types, to avoid some circular reference problems. virtual void dropAllTypeUses(); public: /// PointerType::get - This is the only way to construct a new pointer type. static PointerType *get(const Type *ElementType); // Implement the AbstractTypeUser interface. virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy); virtual void typeBecameConcrete(const DerivedType *AbsTy); // Implement support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const PointerType *T) { return true; } static inline bool classof(const Type *T) { return T->getPrimitiveID() == PointerTyID; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; class OpaqueType : public DerivedType { OpaqueType(const OpaqueType &); // DO NOT IMPLEMENT const OpaqueType &operator=(const OpaqueType &); // DO NOT IMPLEMENT protected: // This should really be private, but it squelches a bogus warning // from GCC to make them protected: warning: `class OpaqueType' only // defines private constructors and has no friends // Private ctor - Only can be created by a static member... OpaqueType(); // dropAllTypeUses - When this (abstract) type is resolved to be equal to // another (more concrete) type, we must eliminate all references to other // types, to avoid some circular reference problems. virtual void dropAllTypeUses() { // FIXME: THIS IS NOT AN ABSTRACT TYPE USER! } // No type uses public: // OpaqueType::get - Static factory method for the OpaqueType class... static OpaqueType *get() { return new OpaqueType(); // All opaque types are distinct } // Implement the AbstractTypeUser interface. virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) { abort(); // FIXME: this is not really an AbstractTypeUser! } virtual void typeBecameConcrete(const DerivedType *AbsTy) { abort(); // FIXME: this is not really an AbstractTypeUser! } // Implement support for type inquiry through isa, cast, and dyn_cast: static inline bool classof(const OpaqueType *T) { return true; } static inline bool classof(const Type *T) { return T->getPrimitiveID() == OpaqueTyID; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; // Define some inline methods for the AbstractTypeUser.h:PATypeHandle class. // These are defined here because they MUST be inlined, yet are dependent on // the definition of the Type class. Of course Type derives from Value, which // contains an AbstractTypeUser instance, so there is no good way to factor out // the code. Hence this bit of uglyness. // inline void PATypeHandle::addUser() { assert(Ty && "Type Handle has a null type!"); if (Ty->isAbstract()) cast(Ty)->addAbstractTypeUser(User); } inline void PATypeHandle::removeUser() { if (Ty->isAbstract()) cast(Ty)->removeAbstractTypeUser(User); } inline void PATypeHandle::removeUserFromConcrete() { if (!Ty->isAbstract()) cast(Ty)->removeAbstractTypeUser(User); } // Define inline methods for PATypeHolder... inline void PATypeHolder::addRef() { if (Ty->isAbstract()) cast(Ty)->addRef(); } inline void PATypeHolder::dropRef() { if (Ty->isAbstract()) cast(Ty)->dropRef(); } /// get - This implements the forwarding part of the union-find algorithm for /// abstract types. Before every access to the Type*, we check to see if the /// type we are pointing to is forwarding to a new type. If so, we drop our /// reference to the type. inline const Type* PATypeHolder::get() const { const Type *NewTy = Ty->getForwardedType(); if (!NewTy) return Ty; return *const_cast(this) = NewTy; } } // End llvm namespace #endif