//===- CodeExtractor.cpp - Pull code region into a new function -----------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the interface to tear out a code region, such as an // individual loop or a parallel section, into a new function, replacing it with // a call to the new function. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/FunctionUtils.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Instructions.h" #include "llvm/Module.h" #include "llvm/Pass.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/Verifier.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "Support/Debug.h" #include "Support/StringExtras.h" #include #include using namespace llvm; namespace { /// getFunctionArg - Return a pointer to F's ARGNOth argument. /// Argument *getFunctionArg(Function *F, unsigned argno) { Function::aiterator I = F->abegin(); std::advance(I, argno); return I; } class CodeExtractor { typedef std::vector Values; typedef std::vector > PhiValChangesTy; typedef std::map PhiVal2ArgTy; PhiVal2ArgTy PhiVal2Arg; std::set BlocksToExtract; DominatorSet *DS; public: CodeExtractor(DominatorSet *ds = 0) : DS(ds) {} Function *ExtractCodeRegion(const std::vector &code); private: void findInputsOutputs(Values &inputs, Values &outputs, BasicBlock *newHeader, BasicBlock *newRootNode); void processPhiNodeInputs(PHINode *Phi, Values &inputs, BasicBlock *newHeader, BasicBlock *newRootNode); void rewritePhiNodes(Function *F, BasicBlock *newFuncRoot); Function *constructFunction(const Values &inputs, const Values &outputs, BasicBlock *newRootNode, BasicBlock *newHeader, Function *oldFunction, Module *M); void moveCodeToFunction(Function *newFunction); void emitCallAndSwitchStatement(Function *newFunction, BasicBlock *newHeader, Values &inputs, Values &outputs); }; } void CodeExtractor::processPhiNodeInputs(PHINode *Phi, Values &inputs, BasicBlock *codeReplacer, BasicBlock *newFuncRoot) { // Separate incoming values and BasicBlocks as internal/external. We ignore // the case where both the value and BasicBlock are internal, because we don't // need to do a thing. std::vector EValEBB; std::vector EValIBB; std::vector IValEBB; for (unsigned i = 0, e = Phi->getNumIncomingValues(); i != e; ++i) { Value *phiVal = Phi->getIncomingValue(i); if (Instruction *Inst = dyn_cast(phiVal)) { if (BlocksToExtract.count(Inst->getParent())) { if (!BlocksToExtract.count(Phi->getIncomingBlock(i))) IValEBB.push_back(i); } else { if (BlocksToExtract.count(Phi->getIncomingBlock(i))) EValIBB.push_back(i); else EValEBB.push_back(i); } } else if (Argument *Arg = dyn_cast(phiVal)) { // arguments are external if (BlocksToExtract.count(Phi->getIncomingBlock(i))) EValIBB.push_back(i); else EValEBB.push_back(i); } else { // Globals/Constants are internal, but considered `external' if they are // coming from an external block. if (!BlocksToExtract.count(Phi->getIncomingBlock(i))) EValEBB.push_back(i); } } // Both value and block are external. Need to group all of these, have an // external phi, pass the result as an argument, and have THIS phi use that // result. if (EValEBB.size() > 0) { if (EValEBB.size() == 1) { // Now if it's coming from the newFuncRoot, it's that funky input unsigned phiIdx = EValEBB[0]; if (!isa(Phi->getIncomingValue(phiIdx))) { PhiVal2Arg[Phi].push_back(std::make_pair(phiIdx, inputs.size())); // We can just pass this value in as argument inputs.push_back(Phi->getIncomingValue(phiIdx)); } Phi->setIncomingBlock(phiIdx, newFuncRoot); } else { PHINode *externalPhi = new PHINode(Phi->getType(), "extPhi"); codeReplacer->getInstList().insert(codeReplacer->begin(), externalPhi); for (std::vector::iterator i = EValEBB.begin(), e = EValEBB.end(); i != e; ++i) { externalPhi->addIncoming(Phi->getIncomingValue(*i), Phi->getIncomingBlock(*i)); // We make these values invalid instead of deleting them because that // would shift the indices of other values... The fixPhiNodes should // clean these phi nodes up later. Phi->setIncomingValue(*i, 0); Phi->setIncomingBlock(*i, 0); } PhiVal2Arg[Phi].push_back(std::make_pair(Phi->getNumIncomingValues(), inputs.size())); // We can just pass this value in as argument inputs.push_back(externalPhi); } } // When the value is external, but block internal... just pass it in as // argument, no change to phi node for (std::vector::iterator i = EValIBB.begin(), e = EValIBB.end(); i != e; ++i) { // rewrite the phi input node to be an argument PhiVal2Arg[Phi].push_back(std::make_pair(*i, inputs.size())); inputs.push_back(Phi->getIncomingValue(*i)); } // Value internal, block external this can happen if we are extracting a part // of a loop. for (std::vector::iterator i = IValEBB.begin(), e = IValEBB.end(); i != e; ++i) { assert(0 && "Cannot (YET) handle internal values via external blocks"); } } void CodeExtractor::findInputsOutputs(Values &inputs, Values &outputs, BasicBlock *newHeader, BasicBlock *newRootNode) { for (std::set::const_iterator ci = BlocksToExtract.begin(), ce = BlocksToExtract.end(); ci != ce; ++ci) { BasicBlock *BB = *ci; for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { // If a used value is defined outside the region, it's an input. If an // instruction is used outside the region, it's an output. if (PHINode *Phi = dyn_cast(I)) { processPhiNodeInputs(Phi, inputs, newHeader, newRootNode); } else { // All other instructions go through the generic input finder // Loop over the operands of each instruction (inputs) for (User::op_iterator op = I->op_begin(), opE = I->op_end(); op != opE; ++op) if (Instruction *opI = dyn_cast(*op)) { // Check if definition of this operand is within the loop if (!BlocksToExtract.count(opI->getParent())) inputs.push_back(opI); } else if (isa(*op)) { inputs.push_back(*op); } } // Consider uses of this instruction (outputs) for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI) if (!BlocksToExtract.count(cast(*UI)->getParent())) { outputs.push_back(I); break; } } // for: insts } // for: basic blocks } void CodeExtractor::rewritePhiNodes(Function *F, BasicBlock *newFuncRoot) { // Write any changes that were saved before: use function arguments as inputs for (PhiVal2ArgTy::iterator i = PhiVal2Arg.begin(), e = PhiVal2Arg.end(); i != e; ++i) { PHINode *phi = i->first; PhiValChangesTy &values = i->second; for (unsigned cIdx = 0, ce = values.size(); cIdx != ce; ++cIdx) { unsigned phiValueIdx = values[cIdx].first, argNum = values[cIdx].second; if (phiValueIdx < phi->getNumIncomingValues()) phi->setIncomingValue(phiValueIdx, getFunctionArg(F, argNum)); else phi->addIncoming(getFunctionArg(F, argNum), newFuncRoot); } } // Delete any invalid Phi node inputs that were marked as NULL previously for (PhiVal2ArgTy::iterator i = PhiVal2Arg.begin(), e = PhiVal2Arg.end(); i != e; ++i) { PHINode *phi = i->first; for (unsigned idx = 0, end = phi->getNumIncomingValues(); idx != end; ++idx) { if (phi->getIncomingValue(idx) == 0 && phi->getIncomingBlock(idx) == 0) { phi->removeIncomingValue(idx); --idx; --end; } } } // We are done with the saved values PhiVal2Arg.clear(); } /// constructFunction - make a function based on inputs and outputs, as follows: /// f(in0, ..., inN, out0, ..., outN) /// Function *CodeExtractor::constructFunction(const Values &inputs, const Values &outputs, BasicBlock *newRootNode, BasicBlock *newHeader, Function *oldFunction, Module *M) { DEBUG(std::cerr << "inputs: " << inputs.size() << "\n"); DEBUG(std::cerr << "outputs: " << outputs.size() << "\n"); BasicBlock *header = *BlocksToExtract.begin(); // This function returns unsigned, outputs will go back by reference. Type *retTy = Type::UShortTy; std::vector paramTy; // Add the types of the input values to the function's argument list for (Values::const_iterator i = inputs.begin(), e = inputs.end(); i != e; ++i) { const Value *value = *i; DEBUG(std::cerr << "value used in func: " << value << "\n"); paramTy.push_back(value->getType()); } // Add the types of the output values to the function's argument list. for (Values::const_iterator I = outputs.begin(), E = outputs.end(); I != E; ++I) { DEBUG(std::cerr << "instr used in func: " << *I << "\n"); paramTy.push_back(PointerType::get((*I)->getType())); } DEBUG(std::cerr << "Function type: " << retTy << " f("); for (std::vector::iterator i = paramTy.begin(), e = paramTy.end(); i != e; ++i) DEBUG(std::cerr << *i << ", "); DEBUG(std::cerr << ")\n"); const FunctionType *funcType = FunctionType::get(retTy, paramTy, false); // Create the new function Function *newFunction = new Function(funcType, GlobalValue::InternalLinkage, oldFunction->getName() + "_code", M); newFunction->getBasicBlockList().push_back(newRootNode); // Create an iterator to name all of the arguments we inserted. Function::aiterator AI = newFunction->abegin(); // Rewrite all users of the inputs in the extracted region to use the // arguments instead. for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI) { AI->setName(inputs[i]->getName()); std::vector Users(inputs[i]->use_begin(), inputs[i]->use_end()); for (std::vector::iterator use = Users.begin(), useE = Users.end(); use != useE; ++use) if (Instruction* inst = dyn_cast(*use)) if (BlocksToExtract.count(inst->getParent())) inst->replaceUsesOfWith(inputs[i], AI); } // Set names for all of the output arguments. for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI) AI->setName(outputs[i]->getName()+".out"); // Rewrite branches to basic blocks outside of the loop to new dummy blocks // within the new function. This must be done before we lose track of which // blocks were originally in the code region. std::vector Users(header->use_begin(), header->use_end()); for (std::vector::iterator i = Users.begin(), e = Users.end(); i != e; ++i) { if (BranchInst *inst = dyn_cast(*i)) { BasicBlock *BB = inst->getParent(); if (!BlocksToExtract.count(BB) && BB->getParent() == oldFunction) { // The BasicBlock which contains the branch is not in the region // modify the branch target to a new block inst->replaceUsesOfWith(header, newHeader); } } } return newFunction; } void CodeExtractor::moveCodeToFunction(Function *newFunction) { Function *oldFunc = (*BlocksToExtract.begin())->getParent(); Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList(); Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList(); for (std::set::const_iterator i = BlocksToExtract.begin(), e = BlocksToExtract.end(); i != e; ++i) { // Delete the basic block from the old function, and the list of blocks oldBlocks.remove(*i); // Insert this basic block into the new function newBlocks.push_back(*i); } } void CodeExtractor::emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer, Values &inputs, Values &outputs) { // Emit a call to the new function, passing allocated memory for outputs and // just plain inputs for non-scalars std::vector params(inputs); // Get an iterator to the first output argument. Function::aiterator OutputArgBegin = newFunction->abegin(); std::advance(OutputArgBegin, inputs.size()); for (unsigned i = 0, e = outputs.size(); i != e; ++i) { Value *Output = outputs[i]; // Create allocas for scalar outputs AllocaInst *alloca = new AllocaInst(outputs[i]->getType(), 0, Output->getName()+".loc", codeReplacer->getParent()->begin()->begin()); params.push_back(alloca); LoadInst *load = new LoadInst(alloca, Output->getName()+".reload"); codeReplacer->getInstList().push_back(load); std::vector Users(outputs[i]->use_begin(), outputs[i]->use_end()); for (unsigned u = 0, e = Users.size(); u != e; ++u) { Instruction *inst = cast(Users[u]); if (!BlocksToExtract.count(inst->getParent())) inst->replaceUsesOfWith(outputs[i], load); } } CallInst *call = new CallInst(newFunction, params, "targetBlock"); codeReplacer->getInstList().push_front(call); // Now we can emit a switch statement using the call as a value. SwitchInst *TheSwitch = new SwitchInst(call, codeReplacer, codeReplacer); // Since there may be multiple exits from the original region, make the new // function return an unsigned, switch on that number. This loop iterates // over all of the blocks in the extracted region, updating any terminator // instructions in the to-be-extracted region that branch to blocks that are // not in the region to be extracted. std::map ExitBlockMap; unsigned switchVal = 0; for (std::set::const_iterator i = BlocksToExtract.begin(), e = BlocksToExtract.end(); i != e; ++i) { TerminatorInst *TI = (*i)->getTerminator(); for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) if (!BlocksToExtract.count(TI->getSuccessor(i))) { BasicBlock *OldTarget = TI->getSuccessor(i); // add a new basic block which returns the appropriate value BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; if (!NewTarget) { // If we don't already have an exit stub for this non-extracted // destination, create one now! NewTarget = new BasicBlock(OldTarget->getName() + ".exitStub", newFunction); ConstantUInt *brVal = ConstantUInt::get(Type::UShortTy, switchVal++); ReturnInst *NTRet = new ReturnInst(brVal, NewTarget); // Update the switch instruction. TheSwitch->addCase(brVal, OldTarget); // Restore values just before we exit // FIXME: Use a GetElementPtr to bunch the outputs in a struct Function::aiterator OAI = OutputArgBegin; for (unsigned out = 0, e = outputs.size(); out != e; ++out, ++OAI) if (!DS || DS->dominates(cast(outputs[out])->getParent(), TI->getParent())) new StoreInst(outputs[out], OAI, NTRet); } // rewrite the original branch instruction with this new target TI->setSuccessor(i, NewTarget); } } // Now that we've done the deed, make the default destination of the switch // instruction be one of the exit blocks of the region. if (TheSwitch->getNumSuccessors() > 1) { // FIXME: this is broken w.r.t. PHI nodes, but the old code was more broken. // This edge is not traversable. TheSwitch->setSuccessor(0, TheSwitch->getSuccessor(1)); } } /// ExtractRegion - Removes a loop from a function, replaces it with a call to /// new function. Returns pointer to the new function. /// /// algorithm: /// /// find inputs and outputs for the region /// /// for inputs: add to function as args, map input instr* to arg# /// for outputs: add allocas for scalars, /// add to func as args, map output instr* to arg# /// /// rewrite func to use argument #s instead of instr* /// /// for each scalar output in the function: at every exit, store intermediate /// computed result back into memory. /// Function *CodeExtractor::ExtractCodeRegion(const std::vector &code) { // 1) Find inputs, outputs // 2) Construct new function // * Add allocas for defs, pass as args by reference // * Pass in uses as args // 3) Move code region, add call instr to func // BlocksToExtract.insert(code.begin(), code.end()); Values inputs, outputs; // Assumption: this is a single-entry code region, and the header is the first // block in the region. BasicBlock *header = code[0]; for (unsigned i = 1, e = code.size(); i != e; ++i) for (pred_iterator PI = pred_begin(code[i]), E = pred_end(code[i]); PI != E; ++PI) assert(BlocksToExtract.count(*PI) && "No blocks in this region may have entries from outside the region" " except for the first block!"); Function *oldFunction = header->getParent(); // This takes place of the original loop BasicBlock *codeReplacer = new BasicBlock("codeRepl", oldFunction); // The new function needs a root node because other nodes can branch to the // head of the loop, and the root cannot have predecessors BasicBlock *newFuncRoot = new BasicBlock("newFuncRoot"); newFuncRoot->getInstList().push_back(new BranchInst(header)); // Find inputs to, outputs from the code region // // If one of the inputs is coming from a different basic block and it's in a // phi node, we need to rewrite the phi node: // // * All the inputs which involve basic blocks OUTSIDE of this region go into // a NEW phi node that takes care of finding which value really came in. // The result of this phi is passed to the function as an argument. // // * All the other phi values stay. // // FIXME: PHI nodes' incoming blocks aren't being rewritten to accomodate for // blocks moving to a new function. // SOLUTION: move Phi nodes out of the loop header into the codeReplacer, pass // the values as parameters to the function findInputsOutputs(inputs, outputs, codeReplacer, newFuncRoot); // Step 2: Construct new function based on inputs/outputs, // Add allocas for all defs Function *newFunction = constructFunction(inputs, outputs, newFuncRoot, codeReplacer, oldFunction, oldFunction->getParent()); rewritePhiNodes(newFunction, newFuncRoot); emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); moveCodeToFunction(newFunction); DEBUG(if (verifyFunction(*newFunction)) abort()); return newFunction; } /// ExtractCodeRegion - slurp a sequence of basic blocks into a brand new /// function /// Function* llvm::ExtractCodeRegion(DominatorSet &DS, const std::vector &code) { return CodeExtractor(&DS).ExtractCodeRegion(code); } /// ExtractBasicBlock - slurp a natural loop into a brand new function /// Function* llvm::ExtractLoop(DominatorSet &DS, Loop *L) { return CodeExtractor(&DS).ExtractCodeRegion(L->getBlocks()); } /// ExtractBasicBlock - slurp a basic block into a brand new function /// Function* llvm::ExtractBasicBlock(BasicBlock *BB) { std::vector Blocks; Blocks.push_back(BB); return CodeExtractor().ExtractCodeRegion(Blocks); }