//===- Mips16InstrInfo.td - Target Description for Mips16 -*- tablegen -*-=// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes Mips16 instructions. // //===----------------------------------------------------------------------===// // // // Mips Address // def addr16 : ComplexPattern; // // Address operand def mem16 : Operand { let PrintMethod = "printMemOperand"; let MIOperandInfo = (ops CPU16Regs, simm16, CPU16Regs); let EncoderMethod = "getMemEncoding"; } def mem16_ea : Operand { let PrintMethod = "printMemOperandEA"; let MIOperandInfo = (ops CPU16Regs, simm16); let EncoderMethod = "getMemEncoding"; } // // Compare a register and immediate and place result in CC // Implicit use of T8 // // EXT-CCRR Instruction format // class FEXT_CCRXI16_ins _op, string asmstr, InstrItinClass itin>: FEXT_RI16<_op, (outs CPU16Regs:$cc), (ins CPU16Regs:$rx, simm16:$imm), !strconcat(asmstr, "\t$rx, $imm\n\tmove\t$cc, $$t8"), [], itin> { let isCodeGenOnly=1; } // JAL and JALX instruction format // class FJAL16_ins _X, string asmstr, InstrItinClass itin>: FJAL16<_X, (outs), (ins simm20:$imm), !strconcat(asmstr, "\t$imm\n\tnop"),[], itin> { let isCodeGenOnly=1; } // // EXT-I instruction format // class FEXT_I16_ins eop, string asmstr, InstrItinClass itin> : FEXT_I16; // // EXT-I8 instruction format // class FEXT_I816_ins_base _func, string asmstr, string asmstr2, InstrItinClass itin>: FEXT_I816<_func, (outs), (ins simm16:$imm), !strconcat(asmstr, asmstr2), [], itin>; class FEXT_I816_ins _func, string asmstr, InstrItinClass itin>: FEXT_I816_ins_base<_func, asmstr, "\t$imm", itin>; class FEXT_I816_SP_ins _func, string asmstr, InstrItinClass itin>: FEXT_I816_ins_base<_func, asmstr, "\t$$sp, $imm", itin>; // // Assembler formats in alphabetical order. // Natural and pseudos are mixed together. // // Compare two registers and place result in CC // Implicit use of T8 // // CC-RR Instruction format // class FCCRR16_ins f, string asmstr, InstrItinClass itin> : FRR16 { let isCodeGenOnly=1; } // // EXT-RI instruction format // class FEXT_RI16_ins_base _op, string asmstr, string asmstr2, InstrItinClass itin>: FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins simm16:$imm), !strconcat(asmstr, asmstr2), [], itin>; class FEXT_RI16_ins _op, string asmstr, InstrItinClass itin>: FEXT_RI16_ins_base<_op, asmstr, "\t$rx, $imm", itin>; class FEXT_RI16_PC_ins _op, string asmstr, InstrItinClass itin>: FEXT_RI16_ins_base<_op, asmstr, "\t$rx, $$pc, $imm", itin>; class FEXT_RI16_B_ins _op, string asmstr, InstrItinClass itin>: FEXT_RI16<_op, (outs), (ins CPU16Regs:$rx, brtarget:$imm), !strconcat(asmstr, "\t$rx, $imm"), [], itin>; class FEXT_2RI16_ins _op, string asmstr, InstrItinClass itin>: FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_, simm16:$imm), !strconcat(asmstr, "\t$rx, $imm"), [], itin> { let Constraints = "$rx_ = $rx"; } // this has an explicit sp argument that we ignore to work around a problem // in the compiler class FEXT_RI16_SP_explicit_ins _op, string asmstr, InstrItinClass itin>: FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins CPUSPReg:$ry, simm16:$imm), !strconcat(asmstr, "\t$rx, $imm ( $ry ); "), [], itin>; // // EXT-RRI instruction format // class FEXT_RRI16_mem_ins op, string asmstr, Operand MemOpnd, InstrItinClass itin>: FEXT_RRI16; class FEXT_RRI16_mem2_ins op, string asmstr, Operand MemOpnd, InstrItinClass itin>: FEXT_RRI16; // // // EXT-RRI-A instruction format // class FEXT_RRI_A16_mem_ins op, string asmstr, Operand MemOpnd, InstrItinClass itin>: FEXT_RRI_A16; // // EXT-SHIFT instruction format // class FEXT_SHIFT16_ins _f, string asmstr, InstrItinClass itin>: FEXT_SHIFT16<_f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry, shamt:$sa), !strconcat(asmstr, "\t$rx, $ry, $sa"), [], itin>; // // EXT-T8I8 // class FEXT_T8I816_ins _func, string asmstr, string asmstr2, InstrItinClass itin>: FEXT_I816<_func, (outs), (ins CPU16Regs:$rx, CPU16Regs:$ry, brtarget:$imm), !strconcat(asmstr2, !strconcat("\t$rx, $ry\n\t", !strconcat(asmstr, "\t$imm"))),[], itin> { let isCodeGenOnly=1; } // // EXT-T8I8I // class FEXT_T8I8I16_ins _func, string asmstr, string asmstr2, InstrItinClass itin>: FEXT_I816<_func, (outs), (ins CPU16Regs:$rx, simm16:$imm, brtarget:$targ), !strconcat(asmstr2, !strconcat("\t$rx, $imm\n\t", !strconcat(asmstr, "\t$targ"))), [], itin> { let isCodeGenOnly=1; } // // // I8_MOVR32 instruction format (used only by the MOVR32 instructio // class FI8_MOVR3216_ins: FI8_MOVR3216<(outs CPU16Regs:$rz), (ins CPURegs:$r32), !strconcat(asmstr, "\t$rz, $r32"), [], itin>; // // I8_MOV32R instruction format (used only by MOV32R instruction) // class FI8_MOV32R16_ins: FI8_MOV32R16<(outs CPURegs:$r32), (ins CPU16Regs:$rz), !strconcat(asmstr, "\t$r32, $rz"), [], itin>; // // This are pseudo formats for multiply // This first one can be changed to non pseudo now. // // MULT // class FMULT16_ins : MipsPseudo16<(outs), (ins CPU16Regs:$rx, CPU16Regs:$ry), !strconcat(asmstr, "\t$rx, $ry"), []>; // // MULT-LO // class FMULT16_LO_ins : MipsPseudo16<(outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry), !strconcat(asmstr, "\t$rx, $ry\n\tmflo\t$rz"), []> { let isCodeGenOnly=1; } // // RR-type instruction format // class FRR16_ins f, string asmstr, InstrItinClass itin> : FRR16 { } class FRRTR16_ins f, string asmstr, InstrItinClass itin> : FRR16 ; // // maybe refactor but need a $zero as a dummy first parameter // class FRR16_div_ins f, string asmstr, InstrItinClass itin> : FRR16 ; class FUnaryRR16_ins f, string asmstr, InstrItinClass itin> : FRR16 ; class FRR16_M_ins f, string asmstr, InstrItinClass itin> : FRR16; class FRxRxRy16_ins f, string asmstr, InstrItinClass itin> : FRR16 { let Constraints = "$rx = $rz"; } let rx=0 in class FRR16_JALRC_RA_only_ins nd_, bits<1> l_, string asmstr, InstrItinClass itin>: FRR16_JALRC ; class FRR16_JALRC_ins nd, bits<1> l, bits<1> ra, string asmstr, InstrItinClass itin>: FRR16_JALRC ; // // RRR-type instruction format // class FRRR16_ins _f, string asmstr, InstrItinClass itin> : FRRR16<_f, (outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry), !strconcat(asmstr, "\t$rz, $rx, $ry"), [], itin>; // // These Sel patterns support the generation of conditional move // pseudo instructions. // // The nomenclature uses the components making up the pseudo and may // be a bit counter intuitive when compared with the end result we seek. // For example using a bqez in the example directly below results in the // conditional move being done if the tested register is not zero. // I considered in easier to check by keeping the pseudo consistent with // it's components but it could have been done differently. // // The simplest case is when can test and operand directly and do the // conditional move based on a simple mips16 conditional // branch instruction. // for example: // if $op == beqz or bnez: // // $op1 $rt, .+4 // move $rd, $rs // // if $op == beqz, then if $rt != 0, then the conditional assignment // $rd = $rs is done. // if $op == bnez, then if $rt == 0, then the conditional assignment // $rd = $rs is done. // // So this pseudo class only has one operand, i.e. op // class Sel f1, string op, InstrItinClass itin>: MipsInst16_32<(outs CPU16Regs:$rd_), (ins CPU16Regs:$rd, CPU16Regs:$rs, CPU16Regs:$rt), !strconcat(op, "\t$rt, .+4\n\t\n\tmove $rd, $rs"), [], itin, Pseudo16> { let isCodeGenOnly=1; let Constraints = "$rd = $rd_"; } // // The next two instruction classes allow for an operand which tests // two operands and returns a value in register T8 and //then does a conditional branch based on the value of T8 // // op2 can be cmpi or slti/sltiu // op1 can bteqz or btnez // the operands for op2 are a register and a signed constant // // $op2 $t, $imm ;test register t and branch conditionally // $op1 .+4 ;op1 is a conditional branch // move $rd, $rs // // class SeliT f1, string op1, bits<5> f2, string op2, InstrItinClass itin>: MipsInst16_32<(outs CPU16Regs:$rd_), (ins CPU16Regs:$rd, CPU16Regs:$rs, CPU16Regs:$rl, simm16:$imm), !strconcat(op2, !strconcat("\t$rl, $imm\n\t", !strconcat(op1, "\t.+4\n\tmove $rd, $rs"))), [], itin, Pseudo16> { let isCodeGenOnly=1; let Constraints = "$rd = $rd_"; } // // op2 can be cmp or slt/sltu // op1 can be bteqz or btnez // the operands for op2 are two registers // op1 is a conditional branch // // // $op2 $rl, $rr ;test registers rl,rr // $op1 .+4 ;op2 is a conditional branch // move $rd, $rs // // class SelT f1, string op1, bits<5> f2, string op2, InstrItinClass itin>: MipsInst16_32<(outs CPU16Regs:$rd_), (ins CPU16Regs:$rd, CPU16Regs:$rs, CPU16Regs:$rl, CPU16Regs:$rr), !strconcat(op2, !strconcat("\t$rl, $rr\n\t", !strconcat(op1, "\t.+4\n\tmove $rd, $rs"))), [], itin, Pseudo16> { let isCodeGenOnly=1; let Constraints = "$rd = $rd_"; } // // 32 bit constant // def imm32: Operand; def Constant32: MipsPseudo16<(outs), (ins imm32:$imm), "\t.word $imm", []>; def LwConstant32: MipsPseudo16<(outs), (ins CPU16Regs:$rx, imm32:$imm), "lw\t$rx, 1f\n\tb\t2f\n\t.align\t2\n1: \t.word\t$imm\n2:", []>; // // Some general instruction class info // // class ArithLogic16Defs { bits<5> shamt = 0; bit isCommutable = isCom; bit isReMaterializable = 1; bit neverHasSideEffects = 1; } class branch16 { bit isBranch = 1; bit isTerminator = 1; bit isBarrier = 1; } class cbranch16 { bit isBranch = 1; bit isTerminator = 1; } class MayLoad { bit mayLoad = 1; } class MayStore { bit mayStore = 1; } // // Format: ADDIU rx, immediate MIPS16e // Purpose: Add Immediate Unsigned Word (2-Operand, Extended) // To add a constant to a 32-bit integer. // def AddiuRxImmX16: FEXT_RI16_ins<0b01001, "addiu", IIAlu>; def AddiuRxRxImmX16: FEXT_2RI16_ins<0b01001, "addiu", IIAlu>, ArithLogic16Defs<0>; def AddiuRxRyOffMemX16: FEXT_RRI_A16_mem_ins<0, "addiu", mem16_ea, IIAlu>; // // Format: ADDIU rx, pc, immediate MIPS16e // Purpose: Add Immediate Unsigned Word (3-Operand, PC-Relative, Extended) // To add a constant to the program counter. // def AddiuRxPcImmX16: FEXT_RI16_PC_ins<0b00001, "addiu", IIAlu>; // // Format: ADDIU sp, immediate MIPS16e // Purpose: Add Immediate Unsigned Word (2-Operand, SP-Relative, Extended) // To add a constant to the stack pointer. // def AddiuSpImmX16 : FEXT_I816_SP_ins<0b011, "addiu", IIAlu> { let Defs = [SP]; let Uses = [SP]; } // // Format: ADDU rz, rx, ry MIPS16e // Purpose: Add Unsigned Word (3-Operand) // To add 32-bit integers. // def AdduRxRyRz16: FRRR16_ins<01, "addu", IIAlu>, ArithLogic16Defs<1>; // // Format: AND rx, ry MIPS16e // Purpose: AND // To do a bitwise logical AND. def AndRxRxRy16: FRxRxRy16_ins<0b01100, "and", IIAlu>, ArithLogic16Defs<1>; // // Format: BEQZ rx, offset MIPS16e // Purpose: Branch on Equal to Zero (Extended) // To test a GPR then do a PC-relative conditional branch. // def BeqzRxImmX16: FEXT_RI16_B_ins<0b00100, "beqz", IIAlu>, cbranch16; // Format: B offset MIPS16e // Purpose: Unconditional Branch // To do an unconditional PC-relative branch. // def BimmX16: FEXT_I16_ins<0b00010, "b", IIAlu>, branch16; // // Format: BNEZ rx, offset MIPS16e // Purpose: Branch on Not Equal to Zero (Extended) // To test a GPR then do a PC-relative conditional branch. // def BnezRxImmX16: FEXT_RI16_B_ins<0b00101, "bnez", IIAlu>, cbranch16; // // Format: BTEQZ offset MIPS16e // Purpose: Branch on T Equal to Zero (Extended) // To test special register T then do a PC-relative conditional branch. // def BteqzX16: FEXT_I816_ins<0b000, "bteqz", IIAlu>, cbranch16; def BteqzT8CmpX16: FEXT_T8I816_ins<0b000, "bteqz", "cmp", IIAlu>, cbranch16; def BteqzT8CmpiX16: FEXT_T8I8I16_ins<0b000, "bteqz", "cmpi", IIAlu>, cbranch16; def BteqzT8SltX16: FEXT_T8I816_ins<0b000, "bteqz", "slt", IIAlu>, cbranch16; def BteqzT8SltuX16: FEXT_T8I816_ins<0b000, "bteqz", "sltu", IIAlu>, cbranch16; def BteqzT8SltiX16: FEXT_T8I8I16_ins<0b000, "bteqz", "slti", IIAlu>, cbranch16; def BteqzT8SltiuX16: FEXT_T8I8I16_ins<0b000, "bteqz", "sltiu", IIAlu>, cbranch16; // // Format: BTNEZ offset MIPS16e // Purpose: Branch on T Not Equal to Zero (Extended) // To test special register T then do a PC-relative conditional branch. // def BtnezX16: FEXT_I816_ins<0b001, "btnez", IIAlu> ,cbranch16; def BtnezT8CmpX16: FEXT_T8I816_ins<0b000, "btnez", "cmp", IIAlu>, cbranch16; def BtnezT8CmpiX16: FEXT_T8I8I16_ins<0b000, "btnez", "cmpi", IIAlu>, cbranch16; def BtnezT8SltX16: FEXT_T8I816_ins<0b000, "btnez", "slt", IIAlu>, cbranch16; def BtnezT8SltuX16: FEXT_T8I816_ins<0b000, "btnez", "sltu", IIAlu>, cbranch16; def BtnezT8SltiX16: FEXT_T8I8I16_ins<0b000, "btnez", "slti", IIAlu>, cbranch16; def BtnezT8SltiuX16: FEXT_T8I8I16_ins<0b000, "btnez", "sltiu", IIAlu>, cbranch16; // // Format: DIV rx, ry MIPS16e // Purpose: Divide Word // To divide 32-bit signed integers. // def DivRxRy16: FRR16_div_ins<0b11010, "div", IIAlu> { let Defs = [HI, LO]; } // // Format: DIVU rx, ry MIPS16e // Purpose: Divide Unsigned Word // To divide 32-bit unsigned integers. // def DivuRxRy16: FRR16_div_ins<0b11011, "divu", IIAlu> { let Defs = [HI, LO]; } // // Format: JAL target MIPS16e // Purpose: Jump and Link // To execute a procedure call within the current 256 MB-aligned // region and preserve the current ISA. // def Jal16 : FJAL16_ins<0b0, "jal", IIAlu> { let isBranch = 1; let hasDelaySlot = 0; // not true, but we add the nop for now let isTerminator=1; let isBarrier=1; } // // Format: JR ra MIPS16e // Purpose: Jump Register Through Register ra // To execute a branch to the instruction address in the return // address register. // def JrRa16: FRR16_JALRC_RA_only_ins<0, 0, "jr", IIAlu> { let isBranch = 1; let isIndirectBranch = 1; let hasDelaySlot = 1; let isTerminator=1; let isBarrier=1; } def JrcRa16: FRR16_JALRC_RA_only_ins<0, 0, "jrc", IIAlu> { let isBranch = 1; let isIndirectBranch = 1; let isTerminator=1; let isBarrier=1; } def JrcRx16: FRR16_JALRC_ins<1, 1, 0, "jrc", IIAlu> { let isBranch = 1; let isIndirectBranch = 1; let isTerminator=1; let isBarrier=1; } // // Format: LB ry, offset(rx) MIPS16e // Purpose: Load Byte (Extended) // To load a byte from memory as a signed value. // def LbRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10011, "lb", mem16, IILoad>, MayLoad; // // Format: LBU ry, offset(rx) MIPS16e // Purpose: Load Byte Unsigned (Extended) // To load a byte from memory as a unsigned value. // def LbuRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10100, "lbu", mem16, IILoad>, MayLoad; // // Format: LH ry, offset(rx) MIPS16e // Purpose: Load Halfword signed (Extended) // To load a halfword from memory as a signed value. // def LhRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10100, "lh", mem16, IILoad>, MayLoad; // // Format: LHU ry, offset(rx) MIPS16e // Purpose: Load Halfword unsigned (Extended) // To load a halfword from memory as an unsigned value. // def LhuRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10100, "lhu", mem16, IILoad>, MayLoad; // // Format: LI rx, immediate MIPS16e // Purpose: Load Immediate (Extended) // To load a constant into a GPR. // def LiRxImmX16: FEXT_RI16_ins<0b01101, "li", IIAlu>; // // Format: LW ry, offset(rx) MIPS16e // Purpose: Load Word (Extended) // To load a word from memory as a signed value. // def LwRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10011, "lw", mem16, IILoad>, MayLoad; // Format: LW rx, offset(sp) MIPS16e // Purpose: Load Word (SP-Relative, Extended) // To load an SP-relative word from memory as a signed value. // def LwRxSpImmX16: FEXT_RI16_SP_explicit_ins<0b10110, "lw", IILoad>, MayLoad{ let Uses = [SP]; } // // Format: MOVE r32, rz MIPS16e // Purpose: Move // To move the contents of a GPR to a GPR. // def Move32R16: FI8_MOV32R16_ins<"move", IIAlu>; // // Format: MOVE ry, r32 MIPS16e //Purpose: Move // To move the contents of a GPR to a GPR. // def MoveR3216: FI8_MOVR3216_ins<"move", IIAlu>; // // Format: MFHI rx MIPS16e // Purpose: Move From HI Register // To copy the special purpose HI register to a GPR. // def Mfhi16: FRR16_M_ins<0b10000, "mfhi", IIAlu> { let Uses = [HI]; let neverHasSideEffects = 1; } // // Format: MFLO rx MIPS16e // Purpose: Move From LO Register // To copy the special purpose LO register to a GPR. // def Mflo16: FRR16_M_ins<0b10010, "mflo", IIAlu> { let Uses = [LO]; let neverHasSideEffects = 1; } // // Pseudo Instruction for mult // def MultRxRy16: FMULT16_ins<"mult", IIAlu> { let isCommutable = 1; let neverHasSideEffects = 1; let Defs = [HI, LO]; } def MultuRxRy16: FMULT16_ins<"multu", IIAlu> { let isCommutable = 1; let neverHasSideEffects = 1; let Defs = [HI, LO]; } // // Format: MULT rx, ry MIPS16e // Purpose: Multiply Word // To multiply 32-bit signed integers. // def MultRxRyRz16: FMULT16_LO_ins<"mult", IIAlu> { let isCommutable = 1; let neverHasSideEffects = 1; let Defs = [HI, LO]; } // // Format: MULTU rx, ry MIPS16e // Purpose: Multiply Unsigned Word // To multiply 32-bit unsigned integers. // def MultuRxRyRz16: FMULT16_LO_ins<"multu", IIAlu> { let isCommutable = 1; let neverHasSideEffects = 1; let Defs = [HI, LO]; } // // Format: NEG rx, ry MIPS16e // Purpose: Negate // To negate an integer value. // def NegRxRy16: FUnaryRR16_ins<0b11101, "neg", IIAlu>; // // Format: NOT rx, ry MIPS16e // Purpose: Not // To complement an integer value // def NotRxRy16: FUnaryRR16_ins<0b01111, "not", IIAlu>; // // Format: OR rx, ry MIPS16e // Purpose: Or // To do a bitwise logical OR. // def OrRxRxRy16: FRxRxRy16_ins<0b01101, "or", IIAlu>, ArithLogic16Defs<1>; // // Format: RESTORE {ra,}{s0/s1/s0-1,}{framesize} // (All args are optional) MIPS16e // Purpose: Restore Registers and Deallocate Stack Frame // To deallocate a stack frame before exit from a subroutine, // restoring return address and static registers, and adjusting // stack // // fixed form for restoring RA and the frame // for direct object emitter, encoding needs to be adjusted for the // frame size // let ra=1, s=0,s0=1,s1=1 in def RestoreRaF16: FI8_SVRS16<0b1, (outs), (ins uimm16:$frame_size), "restore\t$$ra, $$s0, $$s1, $frame_size", [], IILoad >, MayLoad { let isCodeGenOnly = 1; let Defs = [S0, S1, RA, SP]; let Uses = [SP]; } // Use Restore to increment SP since SP is not a Mip 16 register, this // is an easy way to do that which does not require a register. // let ra=0, s=0,s0=0,s1=0 in def RestoreIncSpF16: FI8_SVRS16<0b1, (outs), (ins uimm16:$frame_size), "restore\t$frame_size", [], IILoad >, MayLoad { let isCodeGenOnly = 1; let Defs = [SP]; let Uses = [SP]; } // // Format: SAVE {ra,}{s0/s1/s0-1,}{framesize} (All arguments are optional) // MIPS16e // Purpose: Save Registers and Set Up Stack Frame // To set up a stack frame on entry to a subroutine, // saving return address and static registers, and adjusting stack // let ra=1, s=1,s0=1,s1=1 in def SaveRaF16: FI8_SVRS16<0b1, (outs), (ins uimm16:$frame_size), "save\t$$ra, $$s0, $$s1, $frame_size", [], IIStore >, MayStore { let isCodeGenOnly = 1; let Uses = [RA, SP, S0, S1]; let Defs = [SP]; } // // Use Save to decrement the SP by a constant since SP is not // a Mips16 register. // let ra=0, s=0,s0=0,s1=0 in def SaveDecSpF16: FI8_SVRS16<0b1, (outs), (ins uimm16:$frame_size), "save\t$frame_size", [], IIStore >, MayStore { let isCodeGenOnly = 1; let Uses = [SP]; let Defs = [SP]; } // // Format: SB ry, offset(rx) MIPS16e // Purpose: Store Byte (Extended) // To store a byte to memory. // def SbRxRyOffMemX16: FEXT_RRI16_mem2_ins<0b11000, "sb", mem16, IIStore>, MayStore; // // The Sel(T) instructions are pseudos // T means that they use T8 implicitly. // // // Format: SelBeqZ rd, rs, rt // Purpose: if rt==0, do nothing // else rs = rt // def SelBeqZ: Sel<0b00100, "beqz", IIAlu>; // // Format: SelTBteqZCmp rd, rs, rl, rr // Purpose: b = Cmp rl, rr. // If b==0 then do nothing. // if b!=0 then rd = rs // def SelTBteqZCmp: SelT<0b000, "bteqz", 0b01010, "cmp", IIAlu>; // // Format: SelTBteqZCmpi rd, rs, rl, rr // Purpose: b = Cmpi rl, imm. // If b==0 then do nothing. // if b!=0 then rd = rs // def SelTBteqZCmpi: SeliT<0b000, "bteqz", 0b01110, "cmpi", IIAlu>; // // Format: SelTBteqZSlt rd, rs, rl, rr // Purpose: b = Slt rl, rr. // If b==0 then do nothing. // if b!=0 then rd = rs // def SelTBteqZSlt: SelT<0b000, "bteqz", 0b00010, "slt", IIAlu>; // // Format: SelTBteqZSlti rd, rs, rl, rr // Purpose: b = Slti rl, imm. // If b==0 then do nothing. // if b!=0 then rd = rs // def SelTBteqZSlti: SeliT<0b000, "bteqz", 0b01010, "slti", IIAlu>; // // Format: SelTBteqZSltu rd, rs, rl, rr // Purpose: b = Sltu rl, rr. // If b==0 then do nothing. // if b!=0 then rd = rs // def SelTBteqZSltu: SelT<0b000, "bteqz", 0b00011, "sltu", IIAlu>; // // Format: SelTBteqZSltiu rd, rs, rl, rr // Purpose: b = Sltiu rl, imm. // If b==0 then do nothing. // if b!=0 then rd = rs // def SelTBteqZSltiu: SeliT<0b000, "bteqz", 0b01011, "sltiu", IIAlu>; // // Format: SelBnez rd, rs, rt // Purpose: if rt!=0, do nothing // else rs = rt // def SelBneZ: Sel<0b00101, "bnez", IIAlu>; // // Format: SelTBtneZCmp rd, rs, rl, rr // Purpose: b = Cmp rl, rr. // If b!=0 then do nothing. // if b0=0 then rd = rs // def SelTBtneZCmp: SelT<0b001, "btnez", 0b01010, "cmp", IIAlu>; // // Format: SelTBtnezCmpi rd, rs, rl, rr // Purpose: b = Cmpi rl, imm. // If b!=0 then do nothing. // if b==0 then rd = rs // def SelTBtneZCmpi: SeliT<0b000, "btnez", 0b01110, "cmpi", IIAlu>; // // Format: SelTBtneZSlt rd, rs, rl, rr // Purpose: b = Slt rl, rr. // If b!=0 then do nothing. // if b==0 then rd = rs // def SelTBtneZSlt: SelT<0b001, "btnez", 0b00010, "slt", IIAlu>; // // Format: SelTBtneZSlti rd, rs, rl, rr // Purpose: b = Slti rl, imm. // If b!=0 then do nothing. // if b==0 then rd = rs // def SelTBtneZSlti: SeliT<0b001, "btnez", 0b01010, "slti", IIAlu>; // // Format: SelTBtneZSltu rd, rs, rl, rr // Purpose: b = Sltu rl, rr. // If b!=0 then do nothing. // if b==0 then rd = rs // def SelTBtneZSltu: SelT<0b001, "btnez", 0b00011, "sltu", IIAlu>; // // Format: SelTBtneZSltiu rd, rs, rl, rr // Purpose: b = Slti rl, imm. // If b!=0 then do nothing. // if b==0 then rd = rs // def SelTBtneZSltiu: SeliT<0b001, "btnez", 0b01011, "sltiu", IIAlu>; // // // Format: SH ry, offset(rx) MIPS16e // Purpose: Store Halfword (Extended) // To store a halfword to memory. // def ShRxRyOffMemX16: FEXT_RRI16_mem2_ins<0b11001, "sh", mem16, IIStore>, MayStore; // // Format: SLL rx, ry, sa MIPS16e // Purpose: Shift Word Left Logical (Extended) // To execute a left-shift of a word by a fixed number of bits—0 to 31 bits. // def SllX16: FEXT_SHIFT16_ins<0b00, "sll", IIAlu>; // // Format: SLLV ry, rx MIPS16e // Purpose: Shift Word Left Logical Variable // To execute a left-shift of a word by a variable number of bits. // def SllvRxRy16 : FRxRxRy16_ins<0b00100, "sllv", IIAlu>; // // Format: SLTI rx, immediate MIPS16e // Purpose: Set on Less Than Immediate (Extended) // To record the result of a less-than comparison with a constant. // def SltiCCRxImmX16: FEXT_CCRXI16_ins<0b01010, "slti", IIAlu>; // // Format: SLTIU rx, immediate MIPS16e // Purpose: Set on Less Than Immediate Unsigned (Extended) // To record the result of a less-than comparison with a constant. // def SltiuCCRxImmX16: FEXT_CCRXI16_ins<0b01011, "sltiu", IIAlu>; // // Format: SLT rx, ry MIPS16e // Purpose: Set on Less Than // To record the result of a less-than comparison. // def SltRxRy16: FRR16_ins<0b00010, "slt", IIAlu>; def SltCCRxRy16: FCCRR16_ins<0b00010, "slt", IIAlu>; // Format: SLTU rx, ry MIPS16e // Purpose: Set on Less Than Unsigned // To record the result of an unsigned less-than comparison. // def SltuRxRyRz16: FRRTR16_ins<0b00011, "sltu", IIAlu> { let isCodeGenOnly=1; } def SltuCCRxRy16: FCCRR16_ins<0b00011, "sltu", IIAlu>; // // Format: SRAV ry, rx MIPS16e // Purpose: Shift Word Right Arithmetic Variable // To execute an arithmetic right-shift of a word by a variable // number of bits. // def SravRxRy16: FRxRxRy16_ins<0b00111, "srav", IIAlu>; // // Format: SRA rx, ry, sa MIPS16e // Purpose: Shift Word Right Arithmetic (Extended) // To execute an arithmetic right-shift of a word by a fixed // number of bits—1 to 8 bits. // def SraX16: FEXT_SHIFT16_ins<0b11, "sra", IIAlu>; // // Format: SRLV ry, rx MIPS16e // Purpose: Shift Word Right Logical Variable // To execute a logical right-shift of a word by a variable // number of bits. // def SrlvRxRy16: FRxRxRy16_ins<0b00110, "srlv", IIAlu>; // // Format: SRL rx, ry, sa MIPS16e // Purpose: Shift Word Right Logical (Extended) // To execute a logical right-shift of a word by a fixed // number of bits—1 to 31 bits. // def SrlX16: FEXT_SHIFT16_ins<0b10, "srl", IIAlu>; // // Format: SUBU rz, rx, ry MIPS16e // Purpose: Subtract Unsigned Word // To subtract 32-bit integers // def SubuRxRyRz16: FRRR16_ins<0b11, "subu", IIAlu>, ArithLogic16Defs<0>; // // Format: SW ry, offset(rx) MIPS16e // Purpose: Store Word (Extended) // To store a word to memory. // def SwRxRyOffMemX16: FEXT_RRI16_mem2_ins<0b11011, "sw", mem16, IIStore>, MayStore; // // Format: SW rx, offset(sp) MIPS16e // Purpose: Store Word rx (SP-Relative) // To store an SP-relative word to memory. // def SwRxSpImmX16: FEXT_RI16_SP_explicit_ins<0b11010, "sw", IIStore>, MayStore; // // // Format: XOR rx, ry MIPS16e // Purpose: Xor // To do a bitwise logical XOR. // def XorRxRxRy16: FRxRxRy16_ins<0b01110, "xor", IIAlu>, ArithLogic16Defs<1>; class Mips16Pat : Pat { let Predicates = [InMips16Mode]; } // Unary Arith/Logic // class ArithLogicU_pat : Mips16Pat<(OpNode CPU16Regs:$r), (I CPU16Regs:$r)>; def: ArithLogicU_pat; def: ArithLogicU_pat; class ArithLogic16_pat : Mips16Pat<(OpNode CPU16Regs:$l, CPU16Regs:$r), (I CPU16Regs:$l, CPU16Regs:$r)>; def: ArithLogic16_pat; def: ArithLogic16_pat; def: ArithLogic16_pat; def: ArithLogic16_pat; def: ArithLogic16_pat; def: ArithLogic16_pat; // Arithmetic and logical instructions with 2 register operands. class ArithLogicI16_pat : Mips16Pat<(OpNode CPU16Regs:$in, imm_type:$imm), (I CPU16Regs:$in, imm_type:$imm)>; def: ArithLogicI16_pat; def: ArithLogicI16_pat; def: ArithLogicI16_pat; def: ArithLogicI16_pat; class shift_rotate_reg16_pat : Mips16Pat<(OpNode CPU16Regs:$r, CPU16Regs:$ra), (I CPU16Regs:$r, CPU16Regs:$ra)>; def: shift_rotate_reg16_pat; def: shift_rotate_reg16_pat; def: shift_rotate_reg16_pat; class LoadM16_pat : Mips16Pat<(OpNode addr16:$addr), (I addr16:$addr)>; def: LoadM16_pat; def: LoadM16_pat; def: LoadM16_pat; def: LoadM16_pat; def: LoadM16_pat; class StoreM16_pat : Mips16Pat<(OpNode CPU16Regs:$r, addr16:$addr), (I CPU16Regs:$r, addr16:$addr)>; def: StoreM16_pat; def: StoreM16_pat; def: StoreM16_pat; // Unconditional branch class UncondBranch16_pat: Mips16Pat<(OpNode bb:$imm16), (I bb:$imm16)> { let Predicates = [RelocPIC, InMips16Mode]; } def : Mips16Pat<(MipsJmpLink (i32 tglobaladdr:$dst)), (Jal16 tglobaladdr:$dst)>; // Indirect branch def: Mips16Pat< (brind CPU16Regs:$rs), (JrcRx16 CPU16Regs:$rs)>; // Jump and Link (Call) let isCall=1, hasDelaySlot=0 in def JumpLinkReg16: FRR16_JALRC<0, 0, 0, (outs), (ins CPU16Regs:$rs), "jalrc \t$rs", [(MipsJmpLink CPU16Regs:$rs)], IIBranch>; // Mips16 pseudos let isReturn=1, isTerminator=1, hasDelaySlot=1, isBarrier=1, hasCtrlDep=1, hasExtraSrcRegAllocReq = 1 in def RetRA16 : MipsPseudo16<(outs), (ins), "", [(MipsRet)]>; // setcc patterns class SetCC_R16: Mips16Pat<(cond_op CPU16Regs:$rx, CPU16Regs:$ry), (I CPU16Regs:$rx, CPU16Regs:$ry)>; class SetCC_I16: Mips16Pat<(cond_op CPU16Regs:$rx, imm_type:$imm16), (I CPU16Regs:$rx, imm_type:$imm16)>; def: Mips16Pat<(i32 addr16:$addr), (AddiuRxRyOffMemX16 addr16:$addr)>; // Large (>16 bit) immediate loads def : Mips16Pat<(i32 imm:$imm), (OrRxRxRy16 (SllX16 (LiRxImmX16 (HI16 imm:$imm)), 16), (LiRxImmX16 (LO16 imm:$imm)))>; // Carry MipsPatterns def : Mips16Pat<(subc CPU16Regs:$lhs, CPU16Regs:$rhs), (SubuRxRyRz16 CPU16Regs:$lhs, CPU16Regs:$rhs)>; def : Mips16Pat<(addc CPU16Regs:$lhs, CPU16Regs:$rhs), (AdduRxRyRz16 CPU16Regs:$lhs, CPU16Regs:$rhs)>; def : Mips16Pat<(addc CPU16Regs:$src, immSExt16:$imm), (AddiuRxRxImmX16 CPU16Regs:$src, imm:$imm)>; // // Some branch conditional patterns are not generated by llvm at this time. // Some are for seemingly arbitrary reasons not used: i.e. with signed number // comparison they are used and for unsigned a different pattern is used. // I am pushing upstream from the full mips16 port and it seemed that I needed // these earlier and the mips32 port has these but now I cannot create test // cases that use these patterns. While I sort this all out I will leave these // extra patterns commented out and if I can be sure they are really not used, // I will delete the code. I don't want to check the code in uncommented without // a valid test case. In some cases, the compiler is generating patterns with // setcc instead and earlier I had implemented setcc first so may have masked // the problem. The setcc variants are suboptimal for mips16 so I may wantto // figure out how to enable the brcond patterns or else possibly new // combinations of of brcond and setcc. // // // bcond-seteq // def: Mips16Pat <(brcond (i32 (seteq CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16), (BteqzT8CmpX16 CPU16Regs:$rx, CPU16Regs:$ry, bb:$imm16) >; def: Mips16Pat <(brcond (i32 (seteq CPU16Regs:$rx, immZExt16:$imm)), bb:$targ16), (BteqzT8CmpiX16 CPU16Regs:$rx, immSExt16:$imm, bb:$targ16) >; def: Mips16Pat <(brcond (i32 (seteq CPU16Regs:$rx, 0)), bb:$targ16), (BeqzRxImmX16 CPU16Regs:$rx, bb:$targ16) >; // // bcond-setgt (do we need to have this pair of setlt, setgt??) // def: Mips16Pat <(brcond (i32 (setgt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16), (BtnezT8SltX16 CPU16Regs:$ry, CPU16Regs:$rx, bb:$imm16) >; // // bcond-setge // def: Mips16Pat <(brcond (i32 (setge CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16), (BteqzT8SltX16 CPU16Regs:$rx, CPU16Regs:$ry, bb:$imm16) >; // // never called because compiler transforms a >= k to a > (k-1) def: Mips16Pat <(brcond (i32 (setge CPU16Regs:$rx, immSExt16:$imm)), bb:$imm16), (BteqzT8SltiX16 CPU16Regs:$rx, immSExt16:$imm, bb:$imm16) >; // // bcond-setlt // def: Mips16Pat <(brcond (i32 (setlt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16), (BtnezT8SltX16 CPU16Regs:$rx, CPU16Regs:$ry, bb:$imm16) >; def: Mips16Pat <(brcond (i32 (setlt CPU16Regs:$rx, immSExt16:$imm)), bb:$imm16), (BtnezT8SltiX16 CPU16Regs:$rx, immSExt16:$imm, bb:$imm16) >; // // bcond-setle // def: Mips16Pat <(brcond (i32 (setle CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16), (BteqzT8SltX16 CPU16Regs:$ry, CPU16Regs:$rx, bb:$imm16) >; // // bcond-setne // def: Mips16Pat <(brcond (i32 (setne CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16), (BtnezT8CmpX16 CPU16Regs:$rx, CPU16Regs:$ry, bb:$imm16) >; def: Mips16Pat <(brcond (i32 (setne CPU16Regs:$rx, immZExt16:$imm)), bb:$targ16), (BtnezT8CmpiX16 CPU16Regs:$rx, immSExt16:$imm, bb:$targ16) >; def: Mips16Pat <(brcond (i32 (setne CPU16Regs:$rx, 0)), bb:$targ16), (BnezRxImmX16 CPU16Regs:$rx, bb:$targ16) >; // // This needs to be there but I forget which code will generate it // def: Mips16Pat <(brcond CPU16Regs:$rx, bb:$targ16), (BnezRxImmX16 CPU16Regs:$rx, bb:$targ16) >; // // // bcond-setugt // //def: Mips16Pat // <(brcond (i32 (setugt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16), // (BtnezT8SltuX16 CPU16Regs:$ry, CPU16Regs:$rx, bb:$imm16) // >; // // bcond-setuge // //def: Mips16Pat // <(brcond (i32 (setuge CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16), // (BteqzT8SltuX16 CPU16Regs:$rx, CPU16Regs:$ry, bb:$imm16) // >; // // bcond-setult // //def: Mips16Pat // <(brcond (i32 (setult CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16), // (BtnezT8SltuX16 CPU16Regs:$rx, CPU16Regs:$ry, bb:$imm16) // >; def: UncondBranch16_pat; // Small immediates def: Mips16Pat<(i32 immSExt16:$in), (AddiuRxRxImmX16 (Move32R16 ZERO), immSExt16:$in)>; def: Mips16Pat<(i32 immZExt16:$in), (LiRxImmX16 immZExt16:$in)>; // // MipsDivRem // def: Mips16Pat <(MipsDivRem CPU16Regs:$rx, CPU16Regs:$ry), (DivRxRy16 CPU16Regs:$rx, CPU16Regs:$ry)>; // // MipsDivRemU // def: Mips16Pat <(MipsDivRemU CPU16Regs:$rx, CPU16Regs:$ry), (DivuRxRy16 CPU16Regs:$rx, CPU16Regs:$ry)>; // signed a,b // x = (a>=b)?x:y // // if !(a < b) x = y // def : Mips16Pat<(select (i32 (setge CPU16Regs:$a, CPU16Regs:$b)), CPU16Regs:$x, CPU16Regs:$y), (SelTBteqZSlt CPU16Regs:$x, CPU16Regs:$y, CPU16Regs:$a, CPU16Regs:$b)>; // signed a,b // x = (a>b)?x:y // // if (b < a) x = y // def : Mips16Pat<(select (i32 (setgt CPU16Regs:$a, CPU16Regs:$b)), CPU16Regs:$x, CPU16Regs:$y), (SelTBtneZSlt CPU16Regs:$x, CPU16Regs:$y, CPU16Regs:$b, CPU16Regs:$a)>; // unsigned a,b // x = (a>=b)?x:y // // if !(a < b) x = y; // def : Mips16Pat< (select (i32 (setuge CPU16Regs:$a, CPU16Regs:$b)), CPU16Regs:$x, CPU16Regs:$y), (SelTBteqZSltu CPU16Regs:$x, CPU16Regs:$y, CPU16Regs:$a, CPU16Regs:$b)>; // unsigned a,b // x = (a>b)?x:y // // if (b < a) x = y // def : Mips16Pat<(select (i32 (setugt CPU16Regs:$a, CPU16Regs:$b)), CPU16Regs:$x, CPU16Regs:$y), (SelTBtneZSltu CPU16Regs:$x, CPU16Regs:$y, CPU16Regs:$b, CPU16Regs:$a)>; // signed // x = (a >= k)?x:y // due to an llvm optimization, i don't think that this will ever // be used. This is transformed into x = (a > k-1)?x:y // // //def : Mips16Pat< // (select (i32 (setge CPU16Regs:$lhs, immSExt16:$rhs)), // CPU16Regs:$T, CPU16Regs:$F), // (SelTBteqZSlti CPU16Regs:$T, CPU16Regs:$F, // CPU16Regs:$lhs, immSExt16:$rhs)>; //def : Mips16Pat< // (select (i32 (setuge CPU16Regs:$lhs, immSExt16:$rhs)), // CPU16Regs:$T, CPU16Regs:$F), // (SelTBteqZSltiu CPU16Regs:$T, CPU16Regs:$F, // CPU16Regs:$lhs, immSExt16:$rhs)>; // signed // x = (a < k)?x:y // // if !(a < k) x = y; // def : Mips16Pat< (select (i32 (setlt CPU16Regs:$a, immSExt16:$b)), CPU16Regs:$x, CPU16Regs:$y), (SelTBtneZSlti CPU16Regs:$x, CPU16Regs:$y, CPU16Regs:$a, immSExt16:$b)>; // // // signed // x = (a <= b)? x : y // // if (b < a) x = y // def : Mips16Pat<(select (i32 (setle CPU16Regs:$a, CPU16Regs:$b)), CPU16Regs:$x, CPU16Regs:$y), (SelTBteqZSlt CPU16Regs:$x, CPU16Regs:$y, CPU16Regs:$b, CPU16Regs:$a)>; // // unnsigned // x = (a <= b)? x : y // // if (b < a) x = y // def : Mips16Pat<(select (i32 (setule CPU16Regs:$a, CPU16Regs:$b)), CPU16Regs:$x, CPU16Regs:$y), (SelTBteqZSltu CPU16Regs:$x, CPU16Regs:$y, CPU16Regs:$b, CPU16Regs:$a)>; // // signed/unsigned // x = (a == b)? x : y // // if (a != b) x = y // def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, CPU16Regs:$b)), CPU16Regs:$x, CPU16Regs:$y), (SelTBteqZCmp CPU16Regs:$x, CPU16Regs:$y, CPU16Regs:$b, CPU16Regs:$a)>; // // signed/unsigned // x = (a == 0)? x : y // // if (a != 0) x = y // def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, 0)), CPU16Regs:$x, CPU16Regs:$y), (SelBeqZ CPU16Regs:$x, CPU16Regs:$y, CPU16Regs:$a)>; // // signed/unsigned // x = (a == k)? x : y // // if (a != k) x = y // def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, immZExt16:$k)), CPU16Regs:$x, CPU16Regs:$y), (SelTBteqZCmpi CPU16Regs:$x, CPU16Regs:$y, CPU16Regs:$a, immZExt16:$k)>; // // signed/unsigned // x = (a != b)? x : y // // if (a == b) x = y // // def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, CPU16Regs:$b)), CPU16Regs:$x, CPU16Regs:$y), (SelTBtneZCmp CPU16Regs:$x, CPU16Regs:$y, CPU16Regs:$b, CPU16Regs:$a)>; // // signed/unsigned // x = (a != 0)? x : y // // if (a == 0) x = y // def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, 0)), CPU16Regs:$x, CPU16Regs:$y), (SelBneZ CPU16Regs:$x, CPU16Regs:$y, CPU16Regs:$a)>; // signed/unsigned // x = (a)? x : y // // if (!a) x = y // def : Mips16Pat<(select CPU16Regs:$a, CPU16Regs:$x, CPU16Regs:$y), (SelBneZ CPU16Regs:$x, CPU16Regs:$y, CPU16Regs:$a)>; // // signed/unsigned // x = (a != k)? x : y // // if (a == k) x = y // def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, immZExt16:$k)), CPU16Regs:$x, CPU16Regs:$y), (SelTBtneZCmpi CPU16Regs:$x, CPU16Regs:$y, CPU16Regs:$a, immZExt16:$k)>; // // When writing C code to test setxx these patterns, // some will be transformed into // other things. So we test using C code but using -O3 and -O0 // // seteq // def : Mips16Pat <(seteq CPU16Regs:$lhs,CPU16Regs:$rhs), (SltiuCCRxImmX16 (XorRxRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs), 1)>; def : Mips16Pat <(seteq CPU16Regs:$lhs, 0), (SltiuCCRxImmX16 CPU16Regs:$lhs, 1)>; // // setge // def: Mips16Pat <(setge CPU16Regs:$lhs, CPU16Regs:$rhs), (XorRxRxRy16 (SltCCRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs), (LiRxImmX16 1))>; // // For constants, llvm transforms this to: // x > (k -1) and then reverses the operands to use setlt. So this pattern // is not used now by the compiler. (Presumably checking that k-1 does not // overflow). The compiler never uses this at a the current time, due to // other optimizations. // //def: Mips16Pat // <(setge CPU16Regs:$lhs, immSExt16:$rhs), // (XorRxRxRy16 (SltiCCRxImmX16 CPU16Regs:$lhs, immSExt16:$rhs), // (LiRxImmX16 1))>; // This catches the x >= -32768 case by transforming it to x > -32769 // def: Mips16Pat <(setgt CPU16Regs:$lhs, -32769), (XorRxRxRy16 (SltiCCRxImmX16 CPU16Regs:$lhs, -32768), (LiRxImmX16 1))>; // // setgt // // def: Mips16Pat <(setgt CPU16Regs:$lhs, CPU16Regs:$rhs), (SltCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs)>; // // setle // def: Mips16Pat <(setle CPU16Regs:$lhs, CPU16Regs:$rhs), (XorRxRxRy16 (SltCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs), (LiRxImmX16 1))>; // // setlt // def: SetCC_R16; def: SetCC_I16; // // setne // def : Mips16Pat <(setne CPU16Regs:$lhs,CPU16Regs:$rhs), (SltuCCRxRy16 (LiRxImmX16 0), (XorRxRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs))>; // // setuge // def: Mips16Pat <(setuge CPU16Regs:$lhs, CPU16Regs:$rhs), (XorRxRxRy16 (SltuCCRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs), (LiRxImmX16 1))>; // this pattern will never be used because the compiler will transform // x >= k to x > (k - 1) and then use SLT // //def: Mips16Pat // <(setuge CPU16Regs:$lhs, immZExt16:$rhs), // (XorRxRxRy16 (SltiuCCRxImmX16 CPU16Regs:$lhs, immZExt16:$rhs), // (LiRxImmX16 1))>; // // setugt // def: Mips16Pat <(setugt CPU16Regs:$lhs, CPU16Regs:$rhs), (SltuCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs)>; // // setule // def: Mips16Pat <(setule CPU16Regs:$lhs, CPU16Regs:$rhs), (XorRxRxRy16 (SltuCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs), (LiRxImmX16 1))>; // // setult // def: SetCC_R16; def: SetCC_I16; def: Mips16Pat<(add CPU16Regs:$hi, (MipsLo tglobaladdr:$lo)), (AddiuRxRxImmX16 CPU16Regs:$hi, tglobaladdr:$lo)>; // hi/lo relocs def : Mips16Pat<(MipsHi tglobaladdr:$in), (SllX16 (LiRxImmX16 tglobaladdr:$in), 16)>; def : Mips16Pat<(MipsHi tglobaltlsaddr:$in), (SllX16 (LiRxImmX16 tglobaltlsaddr:$in), 16)>; // wrapper_pic class Wrapper16Pat: Mips16Pat<(MipsWrapper RC:$gp, node:$in), (ADDiuOp RC:$gp, node:$in)>; def : Wrapper16Pat; def : Wrapper16Pat; def : Mips16Pat<(i32 (extloadi8 addr16:$src)), (LbuRxRyOffMemX16 addr16:$src)>; def : Mips16Pat<(i32 (extloadi16 addr16:$src)), (LhuRxRyOffMemX16 addr16:$src)>;