//===-- BasicBlock.cpp - Implement BasicBlock related functions --*- C++ -*--=// // // This file implements the BasicBlock class for the VMCore library. // //===----------------------------------------------------------------------===// #include "ValueHolderImpl.h" #include "llvm/iTerminators.h" #include "llvm/Type.h" #include "llvm/Support/CFG.h" #include "llvm/iPHINode.h" #include "llvm/CodeGen/MachineInstr.h" // Instantiate Templates - This ugliness is the price we have to pay // for having a ValueHolderImpl.h file seperate from ValueHolder.h! :( // template class ValueHolder; BasicBlock::BasicBlock(const std::string &name, Function *Parent) : Value(Type::LabelTy, Value::BasicBlockVal, name), InstList(this, 0), machineInstrVec(new MachineCodeForBasicBlock) { if (Parent) Parent->getBasicBlocks().push_back(this); } BasicBlock::~BasicBlock() { dropAllReferences(); InstList.delete_all(); delete machineInstrVec; } // Specialize setName to take care of symbol table majik void BasicBlock::setName(const std::string &name, SymbolTable *ST) { Function *P; assert((ST == 0 || (!getParent() || ST == getParent()->getSymbolTable())) && "Invalid symtab argument!"); if ((P = getParent()) && hasName()) P->getSymbolTable()->remove(this); Value::setName(name); if (P && hasName()) P->getSymbolTable()->insert(this); } void BasicBlock::setParent(Function *parent) { if (getParent() && hasName()) getParent()->getSymbolTable()->remove(this); InstList.setParent(parent); if (getParent() && hasName()) getParent()->getSymbolTableSure()->insert(this); } TerminatorInst *BasicBlock::getTerminator() { if (InstList.empty()) return 0; Instruction *T = InstList.back(); if (isa(T)) return cast(T); return 0; } const TerminatorInst *const BasicBlock::getTerminator() const { if (InstList.empty()) return 0; if (const TerminatorInst *TI = dyn_cast(InstList.back())) return TI; return 0; } void BasicBlock::dropAllReferences() { for_each(InstList.begin(), InstList.end(), std::mem_fun(&Instruction::dropAllReferences)); } // hasConstantReferences() - This predicate is true if there is a // reference to this basic block in the constant pool for this method. For // example, if a block is reached through a switch table, that table resides // in the constant pool, and the basic block is reference from it. // bool BasicBlock::hasConstantReferences() const { for (use_const_iterator I = use_begin(), E = use_end(); I != E; ++I) if (::isa((Value*)*I)) return true; return false; } // removePredecessor - This method is used to notify a BasicBlock that the // specified Predecessor of the block is no longer able to reach it. This is // actually not used to update the Predecessor list, but is actually used to // update the PHI nodes that reside in the block. Note that this should be // called while the predecessor still refers to this block. // void BasicBlock::removePredecessor(BasicBlock *Pred) { assert(find(pred_begin(this), pred_end(this), Pred) != pred_end(this) && "removePredecessor: BB is not a predecessor!"); if (!isa(front())) return; // Quick exit. pred_iterator PI(pred_begin(this)), EI(pred_end(this)); unsigned max_idx; // Loop over the rest of the predecessors until we run out, or until we find // out that there are more than 2 predecessors. for (max_idx = 0; PI != EI && max_idx < 3; ++PI, ++max_idx) /*empty*/; // If there are exactly two predecessors, then we want to nuke the PHI nodes // altogether. We cannot do this, however if this in this case however: // // Loop: // %x = phi [X, Loop] // %x2 = add %x, 1 ;; This would become %x2 = add %x2, 1 // br Loop ;; %x2 does not dominate all uses // // This is because the PHI node input is actually taken from the predecessor // basic block. The only case this can happen is with a self loop, so we // check for this case explicitly now. // assert(max_idx != 0 && "PHI Node in block with 0 predecessors!?!?!"); if (max_idx == 2) { PI = pred_begin(this); BasicBlock *Other = *PI == Pred ? *++PI : *PI; // Disable PHI elimination! if (this == Other) max_idx = 3; } if (max_idx <= 2) { // <= Two predecessors BEFORE I remove one? // Yup, loop through and nuke the PHI nodes while (PHINode *PN = dyn_cast(front())) { PN->removeIncomingValue(Pred); // Remove the predecessor first... assert(PN->getNumIncomingValues() == max_idx-1 && "PHI node shouldn't have this many values!!!"); // If the PHI _HAD_ two uses, replace PHI node with its now *single* value if (max_idx == 2) PN->replaceAllUsesWith(PN->getOperand(0)); delete getInstList().remove(begin()); // Remove the PHI node } } else { // Okay, now we know that we need to remove predecessor #pred_idx from all // PHI nodes. Iterate over each PHI node fixing them up for (iterator II = begin(); PHINode *PN = dyn_cast(*II); ++II) PN->removeIncomingValue(Pred); } } // splitBasicBlock - This splits a basic block into two at the specified // instruction. Note that all instructions BEFORE the specified iterator stay // as part of the original basic block, an unconditional branch is added to // the new BB, and the rest of the instructions in the BB are moved to the new // BB, including the old terminator. This invalidates the iterator. // // Note that this only works on well formed basic blocks (must have a // terminator), and 'I' must not be the end of instruction list (which would // cause a degenerate basic block to be formed, having a terminator inside of // the basic block). // BasicBlock *BasicBlock::splitBasicBlock(iterator I) { assert(getTerminator() && "Can't use splitBasicBlock on degenerate BB!"); assert(I != InstList.end() && "Trying to get me to create degenerate basic block!"); BasicBlock *New = new BasicBlock("", getParent()); // Go from the end of the basic block through to the iterator pointer, moving // to the new basic block... Instruction *Inst = 0; do { iterator EndIt = end(); Inst = InstList.remove(--EndIt); // Remove from end New->InstList.push_front(Inst); // Add to front } while (Inst != *I); // Loop until we move the specified instruction. // Add a branch instruction to the newly formed basic block. InstList.push_back(new BranchInst(New)); // Now we must loop through all of the successors of the New block (which // _were_ the successors of the 'this' block), and update any PHI nodes in // successors. If there were PHI nodes in the successors, then they need to // know that incoming branches will be from New, not from Old. // for (BasicBlock::succ_iterator I = succ_begin(New), E = succ_end(New); I != E; ++I) { // Loop over any phi nodes in the basic block, updating the BB field of // incoming values... BasicBlock *Successor = *I; for (BasicBlock::iterator II = Successor->begin(); PHINode *PN = dyn_cast(*II); ++II) { int IDX = PN->getBasicBlockIndex(this); while (IDX != -1) { PN->setIncomingBlock((unsigned)IDX, New); IDX = PN->getBasicBlockIndex(this); } } } return New; }