//===-- SystemZISelLowering.h - SystemZ DAG lowering interface --*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the interfaces that SystemZ uses to lower LLVM code into a // selection DAG. // //===----------------------------------------------------------------------===// #ifndef LLVM_TARGET_SystemZ_ISELLOWERING_H #define LLVM_TARGET_SystemZ_ISELLOWERING_H #include "SystemZ.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/Target/TargetLowering.h" namespace llvm { namespace SystemZISD { enum { FIRST_NUMBER = ISD::BUILTIN_OP_END, // Return with a flag operand. Operand 0 is the chain operand. RET_FLAG, // Calls a function. Operand 0 is the chain operand and operand 1 // is the target address. The arguments start at operand 2. // There is an optional glue operand at the end. CALL, SIBCALL, // Wraps a TargetGlobalAddress that should be loaded using PC-relative // accesses (LARL). Operand 0 is the address. PCREL_WRAPPER, // Used in cases where an offset is applied to a TargetGlobalAddress. // Operand 0 is the full TargetGlobalAddress and operand 1 is a // PCREL_WRAPPER for an anchor point. This is used so that we can // cheaply refer to either the full address or the anchor point // as a register base. PCREL_OFFSET, // Integer comparisons. There are three operands: the two values // to compare, and an integer of type SystemZICMP. ICMP, // Floating-point comparisons. The two operands are the values to compare. FCMP, // Test under mask. The first operand is ANDed with the second operand // and the condition codes are set on the result. The third operand is // a boolean that is true if the condition codes need to distinguish // between CCMASK_TM_MIXED_MSB_0 and CCMASK_TM_MIXED_MSB_1 (which the // register forms do but the memory forms don't). TM, // Branches if a condition is true. Operand 0 is the chain operand; // operand 1 is the 4-bit condition-code mask, with bit N in // big-endian order meaning "branch if CC=N"; operand 2 is the // target block and operand 3 is the flag operand. BR_CCMASK, // Selects between operand 0 and operand 1. Operand 2 is the // mask of condition-code values for which operand 0 should be // chosen over operand 1; it has the same form as BR_CCMASK. // Operand 3 is the flag operand. SELECT_CCMASK, // Evaluates to the gap between the stack pointer and the // base of the dynamically-allocatable area. ADJDYNALLOC, // Extracts the value of a 32-bit access register. Operand 0 is // the number of the register. EXTRACT_ACCESS, // Wrappers around the ISD opcodes of the same name. The output and // first input operands are GR128s. The trailing numbers are the // widths of the second operand in bits. UMUL_LOHI64, SDIVREM32, SDIVREM64, UDIVREM32, UDIVREM64, // Use a series of MVCs to copy bytes from one memory location to another. // The operands are: // - the target address // - the source address // - the constant length // // This isn't a memory opcode because we'd need to attach two // MachineMemOperands rather than one. MVC, // Like MVC, but implemented as a loop that handles X*256 bytes // followed by straight-line code to handle the rest (if any). // The value of X is passed as an additional operand. MVC_LOOP, // Similar to MVC and MVC_LOOP, but for logic operations (AND, OR, XOR). NC, NC_LOOP, OC, OC_LOOP, XC, XC_LOOP, // Use CLC to compare two blocks of memory, with the same comments // as for MVC and MVC_LOOP. CLC, CLC_LOOP, // Use an MVST-based sequence to implement stpcpy(). STPCPY, // Use a CLST-based sequence to implement strcmp(). The two input operands // are the addresses of the strings to compare. STRCMP, // Use an SRST-based sequence to search a block of memory. The first // operand is the end address, the second is the start, and the third // is the character to search for. CC is set to 1 on success and 2 // on failure. SEARCH_STRING, // Store the CC value in bits 29 and 28 of an integer. IPM, // Perform a serialization operation. (BCR 15,0 or BCR 14,0.) SERIALIZE, // Wrappers around the inner loop of an 8- or 16-bit ATOMIC_SWAP or // ATOMIC_LOAD_. // // Operand 0: the address of the containing 32-bit-aligned field // Operand 1: the second operand of , in the high bits of an i32 // for everything except ATOMIC_SWAPW // Operand 2: how many bits to rotate the i32 left to bring the first // operand into the high bits // Operand 3: the negative of operand 2, for rotating the other way // Operand 4: the width of the field in bits (8 or 16) ATOMIC_SWAPW = ISD::FIRST_TARGET_MEMORY_OPCODE, ATOMIC_LOADW_ADD, ATOMIC_LOADW_SUB, ATOMIC_LOADW_AND, ATOMIC_LOADW_OR, ATOMIC_LOADW_XOR, ATOMIC_LOADW_NAND, ATOMIC_LOADW_MIN, ATOMIC_LOADW_MAX, ATOMIC_LOADW_UMIN, ATOMIC_LOADW_UMAX, // A wrapper around the inner loop of an ATOMIC_CMP_SWAP. // // Operand 0: the address of the containing 32-bit-aligned field // Operand 1: the compare value, in the low bits of an i32 // Operand 2: the swap value, in the low bits of an i32 // Operand 3: how many bits to rotate the i32 left to bring the first // operand into the high bits // Operand 4: the negative of operand 2, for rotating the other way // Operand 5: the width of the field in bits (8 or 16) ATOMIC_CMP_SWAPW, // Prefetch from the second operand using the 4-bit control code in // the first operand. The code is 1 for a load prefetch and 2 for // a store prefetch. PREFETCH }; // Return true if OPCODE is some kind of PC-relative address. inline bool isPCREL(unsigned Opcode) { return Opcode == PCREL_WRAPPER || Opcode == PCREL_OFFSET; } } namespace SystemZICMP { // Describes whether an integer comparison needs to be signed or unsigned, // or whether either type is OK. enum { Any, UnsignedOnly, SignedOnly }; } class SystemZSubtarget; class SystemZTargetMachine; class SystemZTargetLowering : public TargetLowering { public: explicit SystemZTargetLowering(SystemZTargetMachine &TM); // Override TargetLowering. virtual MVT getScalarShiftAmountTy(EVT LHSTy) const LLVM_OVERRIDE { return MVT::i32; } virtual EVT getSetCCResultType(LLVMContext &, EVT) const LLVM_OVERRIDE; virtual bool isFMAFasterThanFMulAndFAdd(EVT VT) const LLVM_OVERRIDE; virtual bool isFPImmLegal(const APFloat &Imm, EVT VT) const LLVM_OVERRIDE; virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const LLVM_OVERRIDE; virtual bool allowsUnalignedMemoryAccesses(EVT VT, bool *Fast) const LLVM_OVERRIDE; virtual bool isTruncateFree(Type *, Type *) const LLVM_OVERRIDE; virtual bool isTruncateFree(EVT, EVT) const LLVM_OVERRIDE; virtual const char *getTargetNodeName(unsigned Opcode) const LLVM_OVERRIDE; virtual std::pair getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const LLVM_OVERRIDE; virtual TargetLowering::ConstraintType getConstraintType(const std::string &Constraint) const LLVM_OVERRIDE; virtual TargetLowering::ConstraintWeight getSingleConstraintMatchWeight(AsmOperandInfo &info, const char *constraint) const LLVM_OVERRIDE; virtual void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, std::vector &Ops, SelectionDAG &DAG) const LLVM_OVERRIDE; virtual MachineBasicBlock * EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *BB) const LLVM_OVERRIDE; virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const LLVM_OVERRIDE; virtual bool allowTruncateForTailCall(Type *, Type *) const LLVM_OVERRIDE; virtual bool mayBeEmittedAsTailCall(CallInst *CI) const LLVM_OVERRIDE; virtual SDValue LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, SDLoc DL, SelectionDAG &DAG, SmallVectorImpl &InVals) const LLVM_OVERRIDE; virtual SDValue LowerCall(CallLoweringInfo &CLI, SmallVectorImpl &InVals) const LLVM_OVERRIDE; virtual SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, SDLoc DL, SelectionDAG &DAG) const LLVM_OVERRIDE; virtual SDValue prepareVolatileOrAtomicLoad(SDValue Chain, SDLoc DL, SelectionDAG &DAG) const LLVM_OVERRIDE; private: const SystemZSubtarget &Subtarget; const SystemZTargetMachine &TM; // Implement LowerOperation for individual opcodes. SDValue lowerSETCC(SDValue Op, SelectionDAG &DAG) const; SDValue lowerBR_CC(SDValue Op, SelectionDAG &DAG) const; SDValue lowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const; SDValue lowerGlobalAddress(GlobalAddressSDNode *Node, SelectionDAG &DAG) const; SDValue lowerGlobalTLSAddress(GlobalAddressSDNode *Node, SelectionDAG &DAG) const; SDValue lowerBlockAddress(BlockAddressSDNode *Node, SelectionDAG &DAG) const; SDValue lowerJumpTable(JumpTableSDNode *JT, SelectionDAG &DAG) const; SDValue lowerConstantPool(ConstantPoolSDNode *CP, SelectionDAG &DAG) const; SDValue lowerVASTART(SDValue Op, SelectionDAG &DAG) const; SDValue lowerVACOPY(SDValue Op, SelectionDAG &DAG) const; SDValue lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const; SDValue lowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG) const; SDValue lowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const; SDValue lowerSDIVREM(SDValue Op, SelectionDAG &DAG) const; SDValue lowerUDIVREM(SDValue Op, SelectionDAG &DAG) const; SDValue lowerBITCAST(SDValue Op, SelectionDAG &DAG) const; SDValue lowerOR(SDValue Op, SelectionDAG &DAG) const; SDValue lowerATOMIC_LOAD(SDValue Op, SelectionDAG &DAG, unsigned Opcode) const; SDValue lowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const; SDValue lowerLOAD_SEQUENCE_POINT(SDValue Op, SelectionDAG &DAG) const; SDValue lowerSTACKSAVE(SDValue Op, SelectionDAG &DAG) const; SDValue lowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG) const; SDValue lowerPREFETCH(SDValue Op, SelectionDAG &DAG) const; // If the last instruction before MBBI in MBB was some form of COMPARE, // try to replace it with a COMPARE AND BRANCH just before MBBI. // CCMask and Target are the BRC-like operands for the branch. // Return true if the change was made. bool convertPrevCompareToBranch(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI, unsigned CCMask, MachineBasicBlock *Target) const; // Implement EmitInstrWithCustomInserter for individual operation types. MachineBasicBlock *emitSelect(MachineInstr *MI, MachineBasicBlock *BB) const; MachineBasicBlock *emitCondStore(MachineInstr *MI, MachineBasicBlock *BB, unsigned StoreOpcode, unsigned STOCOpcode, bool Invert) const; MachineBasicBlock *emitExt128(MachineInstr *MI, MachineBasicBlock *MBB, bool ClearEven, unsigned SubReg) const; MachineBasicBlock *emitAtomicLoadBinary(MachineInstr *MI, MachineBasicBlock *BB, unsigned BinOpcode, unsigned BitSize, bool Invert = false) const; MachineBasicBlock *emitAtomicLoadMinMax(MachineInstr *MI, MachineBasicBlock *MBB, unsigned CompareOpcode, unsigned KeepOldMask, unsigned BitSize) const; MachineBasicBlock *emitAtomicCmpSwapW(MachineInstr *MI, MachineBasicBlock *BB) const; MachineBasicBlock *emitMemMemWrapper(MachineInstr *MI, MachineBasicBlock *BB, unsigned Opcode) const; MachineBasicBlock *emitStringWrapper(MachineInstr *MI, MachineBasicBlock *BB, unsigned Opcode) const; }; } // end namespace llvm #endif // LLVM_TARGET_SystemZ_ISELLOWERING_H