//===- ARMBaseInstrInfo.cpp - ARM Instruction Information -------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the Base ARM implementation of the TargetInstrInfo class. // //===----------------------------------------------------------------------===// #include "ARMBaseInstrInfo.h" #include "ARM.h" #include "ARMConstantPoolValue.h" #include "ARMHazardRecognizer.h" #include "ARMMachineFunctionInfo.h" #include "ARMRegisterInfo.h" #include "MCTargetDesc/ARMAddressingModes.h" #include "llvm/Constants.h" #include "llvm/Function.h" #include "llvm/GlobalValue.h" #include "llvm/CodeGen/LiveVariables.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineJumpTableInfo.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/SelectionDAGNodes.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/Support/BranchProbability.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/ADT/STLExtras.h" #define GET_INSTRINFO_CTOR #include "ARMGenInstrInfo.inc" using namespace llvm; static cl::opt EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden, cl::desc("Enable ARM 2-addr to 3-addr conv")); static cl::opt WidenVMOVS("widen-vmovs", cl::Hidden, cl::init(true), cl::desc("Widen ARM vmovs to vmovd when possible")); /// ARM_MLxEntry - Record information about MLA / MLS instructions. struct ARM_MLxEntry { unsigned MLxOpc; // MLA / MLS opcode unsigned MulOpc; // Expanded multiplication opcode unsigned AddSubOpc; // Expanded add / sub opcode bool NegAcc; // True if the acc is negated before the add / sub. bool HasLane; // True if instruction has an extra "lane" operand. }; static const ARM_MLxEntry ARM_MLxTable[] = { // MLxOpc, MulOpc, AddSubOpc, NegAcc, HasLane // fp scalar ops { ARM::VMLAS, ARM::VMULS, ARM::VADDS, false, false }, { ARM::VMLSS, ARM::VMULS, ARM::VSUBS, false, false }, { ARM::VMLAD, ARM::VMULD, ARM::VADDD, false, false }, { ARM::VMLSD, ARM::VMULD, ARM::VSUBD, false, false }, { ARM::VNMLAS, ARM::VNMULS, ARM::VSUBS, true, false }, { ARM::VNMLSS, ARM::VMULS, ARM::VSUBS, true, false }, { ARM::VNMLAD, ARM::VNMULD, ARM::VSUBD, true, false }, { ARM::VNMLSD, ARM::VMULD, ARM::VSUBD, true, false }, // fp SIMD ops { ARM::VMLAfd, ARM::VMULfd, ARM::VADDfd, false, false }, { ARM::VMLSfd, ARM::VMULfd, ARM::VSUBfd, false, false }, { ARM::VMLAfq, ARM::VMULfq, ARM::VADDfq, false, false }, { ARM::VMLSfq, ARM::VMULfq, ARM::VSUBfq, false, false }, { ARM::VMLAslfd, ARM::VMULslfd, ARM::VADDfd, false, true }, { ARM::VMLSslfd, ARM::VMULslfd, ARM::VSUBfd, false, true }, { ARM::VMLAslfq, ARM::VMULslfq, ARM::VADDfq, false, true }, { ARM::VMLSslfq, ARM::VMULslfq, ARM::VSUBfq, false, true }, }; ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI) : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP), Subtarget(STI) { for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) { if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second) assert(false && "Duplicated entries?"); MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc); MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc); } } // Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl // currently defaults to no prepass hazard recognizer. ScheduleHazardRecognizer *ARMBaseInstrInfo:: CreateTargetHazardRecognizer(const TargetMachine *TM, const ScheduleDAG *DAG) const { if (usePreRAHazardRecognizer()) { const InstrItineraryData *II = TM->getInstrItineraryData(); return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched"); } return TargetInstrInfoImpl::CreateTargetHazardRecognizer(TM, DAG); } ScheduleHazardRecognizer *ARMBaseInstrInfo:: CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, const ScheduleDAG *DAG) const { if (Subtarget.isThumb2() || Subtarget.hasVFP2()) return (ScheduleHazardRecognizer *) new ARMHazardRecognizer(II, *this, getRegisterInfo(), Subtarget, DAG); return TargetInstrInfoImpl::CreateTargetPostRAHazardRecognizer(II, DAG); } MachineInstr * ARMBaseInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const { // FIXME: Thumb2 support. if (!EnableARM3Addr) return NULL; MachineInstr *MI = MBBI; MachineFunction &MF = *MI->getParent()->getParent(); uint64_t TSFlags = MI->getDesc().TSFlags; bool isPre = false; switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) { default: return NULL; case ARMII::IndexModePre: isPre = true; break; case ARMII::IndexModePost: break; } // Try splitting an indexed load/store to an un-indexed one plus an add/sub // operation. unsigned MemOpc = getUnindexedOpcode(MI->getOpcode()); if (MemOpc == 0) return NULL; MachineInstr *UpdateMI = NULL; MachineInstr *MemMI = NULL; unsigned AddrMode = (TSFlags & ARMII::AddrModeMask); const MCInstrDesc &MCID = MI->getDesc(); unsigned NumOps = MCID.getNumOperands(); bool isLoad = !MI->mayStore(); const MachineOperand &WB = isLoad ? MI->getOperand(1) : MI->getOperand(0); const MachineOperand &Base = MI->getOperand(2); const MachineOperand &Offset = MI->getOperand(NumOps-3); unsigned WBReg = WB.getReg(); unsigned BaseReg = Base.getReg(); unsigned OffReg = Offset.getReg(); unsigned OffImm = MI->getOperand(NumOps-2).getImm(); ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI->getOperand(NumOps-1).getImm(); switch (AddrMode) { default: assert(false && "Unknown indexed op!"); return NULL; case ARMII::AddrMode2: { bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub; unsigned Amt = ARM_AM::getAM2Offset(OffImm); if (OffReg == 0) { if (ARM_AM::getSOImmVal(Amt) == -1) // Can't encode it in a so_imm operand. This transformation will // add more than 1 instruction. Abandon! return NULL; UpdateMI = BuildMI(MF, MI->getDebugLoc(), get(isSub ? ARM::SUBri : ARM::ADDri), WBReg) .addReg(BaseReg).addImm(Amt) .addImm(Pred).addReg(0).addReg(0); } else if (Amt != 0) { ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm); unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt); UpdateMI = BuildMI(MF, MI->getDebugLoc(), get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg) .addReg(BaseReg).addReg(OffReg).addReg(0).addImm(SOOpc) .addImm(Pred).addReg(0).addReg(0); } else UpdateMI = BuildMI(MF, MI->getDebugLoc(), get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg) .addReg(BaseReg).addReg(OffReg) .addImm(Pred).addReg(0).addReg(0); break; } case ARMII::AddrMode3 : { bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub; unsigned Amt = ARM_AM::getAM3Offset(OffImm); if (OffReg == 0) // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand. UpdateMI = BuildMI(MF, MI->getDebugLoc(), get(isSub ? ARM::SUBri : ARM::ADDri), WBReg) .addReg(BaseReg).addImm(Amt) .addImm(Pred).addReg(0).addReg(0); else UpdateMI = BuildMI(MF, MI->getDebugLoc(), get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg) .addReg(BaseReg).addReg(OffReg) .addImm(Pred).addReg(0).addReg(0); break; } } std::vector NewMIs; if (isPre) { if (isLoad) MemMI = BuildMI(MF, MI->getDebugLoc(), get(MemOpc), MI->getOperand(0).getReg()) .addReg(WBReg).addImm(0).addImm(Pred); else MemMI = BuildMI(MF, MI->getDebugLoc(), get(MemOpc)).addReg(MI->getOperand(1).getReg()) .addReg(WBReg).addReg(0).addImm(0).addImm(Pred); NewMIs.push_back(MemMI); NewMIs.push_back(UpdateMI); } else { if (isLoad) MemMI = BuildMI(MF, MI->getDebugLoc(), get(MemOpc), MI->getOperand(0).getReg()) .addReg(BaseReg).addImm(0).addImm(Pred); else MemMI = BuildMI(MF, MI->getDebugLoc(), get(MemOpc)).addReg(MI->getOperand(1).getReg()) .addReg(BaseReg).addReg(0).addImm(0).addImm(Pred); if (WB.isDead()) UpdateMI->getOperand(0).setIsDead(); NewMIs.push_back(UpdateMI); NewMIs.push_back(MemMI); } // Transfer LiveVariables states, kill / dead info. if (LV) { for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) { unsigned Reg = MO.getReg(); LiveVariables::VarInfo &VI = LV->getVarInfo(Reg); if (MO.isDef()) { MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI; if (MO.isDead()) LV->addVirtualRegisterDead(Reg, NewMI); } if (MO.isUse() && MO.isKill()) { for (unsigned j = 0; j < 2; ++j) { // Look at the two new MI's in reverse order. MachineInstr *NewMI = NewMIs[j]; if (!NewMI->readsRegister(Reg)) continue; LV->addVirtualRegisterKilled(Reg, NewMI); if (VI.removeKill(MI)) VI.Kills.push_back(NewMI); break; } } } } } MFI->insert(MBBI, NewMIs[1]); MFI->insert(MBBI, NewMIs[0]); return NewMIs[0]; } // Branch analysis. bool ARMBaseInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl &Cond, bool AllowModify) const { // If the block has no terminators, it just falls into the block after it. MachineBasicBlock::iterator I = MBB.end(); if (I == MBB.begin()) return false; --I; while (I->isDebugValue()) { if (I == MBB.begin()) return false; --I; } if (!isUnpredicatedTerminator(I)) return false; // Get the last instruction in the block. MachineInstr *LastInst = I; // If there is only one terminator instruction, process it. unsigned LastOpc = LastInst->getOpcode(); if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) { if (isUncondBranchOpcode(LastOpc)) { TBB = LastInst->getOperand(0).getMBB(); return false; } if (isCondBranchOpcode(LastOpc)) { // Block ends with fall-through condbranch. TBB = LastInst->getOperand(0).getMBB(); Cond.push_back(LastInst->getOperand(1)); Cond.push_back(LastInst->getOperand(2)); return false; } return true; // Can't handle indirect branch. } // Get the instruction before it if it is a terminator. MachineInstr *SecondLastInst = I; unsigned SecondLastOpc = SecondLastInst->getOpcode(); // If AllowModify is true and the block ends with two or more unconditional // branches, delete all but the first unconditional branch. if (AllowModify && isUncondBranchOpcode(LastOpc)) { while (isUncondBranchOpcode(SecondLastOpc)) { LastInst->eraseFromParent(); LastInst = SecondLastInst; LastOpc = LastInst->getOpcode(); if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) { // Return now the only terminator is an unconditional branch. TBB = LastInst->getOperand(0).getMBB(); return false; } else { SecondLastInst = I; SecondLastOpc = SecondLastInst->getOpcode(); } } } // If there are three terminators, we don't know what sort of block this is. if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(--I)) return true; // If the block ends with a B and a Bcc, handle it. if (isCondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) { TBB = SecondLastInst->getOperand(0).getMBB(); Cond.push_back(SecondLastInst->getOperand(1)); Cond.push_back(SecondLastInst->getOperand(2)); FBB = LastInst->getOperand(0).getMBB(); return false; } // If the block ends with two unconditional branches, handle it. The second // one is not executed, so remove it. if (isUncondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) { TBB = SecondLastInst->getOperand(0).getMBB(); I = LastInst; if (AllowModify) I->eraseFromParent(); return false; } // ...likewise if it ends with a branch table followed by an unconditional // branch. The branch folder can create these, and we must get rid of them for // correctness of Thumb constant islands. if ((isJumpTableBranchOpcode(SecondLastOpc) || isIndirectBranchOpcode(SecondLastOpc)) && isUncondBranchOpcode(LastOpc)) { I = LastInst; if (AllowModify) I->eraseFromParent(); return true; } // Otherwise, can't handle this. return true; } unsigned ARMBaseInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { MachineBasicBlock::iterator I = MBB.end(); if (I == MBB.begin()) return 0; --I; while (I->isDebugValue()) { if (I == MBB.begin()) return 0; --I; } if (!isUncondBranchOpcode(I->getOpcode()) && !isCondBranchOpcode(I->getOpcode())) return 0; // Remove the branch. I->eraseFromParent(); I = MBB.end(); if (I == MBB.begin()) return 1; --I; if (!isCondBranchOpcode(I->getOpcode())) return 1; // Remove the branch. I->eraseFromParent(); return 2; } unsigned ARMBaseInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, const SmallVectorImpl &Cond, DebugLoc DL) const { ARMFunctionInfo *AFI = MBB.getParent()->getInfo(); int BOpc = !AFI->isThumbFunction() ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB); int BccOpc = !AFI->isThumbFunction() ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc); bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function(); // Shouldn't be a fall through. assert(TBB && "InsertBranch must not be told to insert a fallthrough"); assert((Cond.size() == 2 || Cond.size() == 0) && "ARM branch conditions have two components!"); if (FBB == 0) { if (Cond.empty()) { // Unconditional branch? if (isThumb) BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).addImm(ARMCC::AL).addReg(0); else BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB); } else BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB) .addImm(Cond[0].getImm()).addReg(Cond[1].getReg()); return 1; } // Two-way conditional branch. BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB) .addImm(Cond[0].getImm()).addReg(Cond[1].getReg()); if (isThumb) BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).addImm(ARMCC::AL).addReg(0); else BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB); return 2; } bool ARMBaseInstrInfo:: ReverseBranchCondition(SmallVectorImpl &Cond) const { ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm(); Cond[0].setImm(ARMCC::getOppositeCondition(CC)); return false; } bool ARMBaseInstrInfo:: PredicateInstruction(MachineInstr *MI, const SmallVectorImpl &Pred) const { unsigned Opc = MI->getOpcode(); if (isUncondBranchOpcode(Opc)) { MI->setDesc(get(getMatchingCondBranchOpcode(Opc))); MI->addOperand(MachineOperand::CreateImm(Pred[0].getImm())); MI->addOperand(MachineOperand::CreateReg(Pred[1].getReg(), false)); return true; } int PIdx = MI->findFirstPredOperandIdx(); if (PIdx != -1) { MachineOperand &PMO = MI->getOperand(PIdx); PMO.setImm(Pred[0].getImm()); MI->getOperand(PIdx+1).setReg(Pred[1].getReg()); return true; } return false; } bool ARMBaseInstrInfo:: SubsumesPredicate(const SmallVectorImpl &Pred1, const SmallVectorImpl &Pred2) const { if (Pred1.size() > 2 || Pred2.size() > 2) return false; ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm(); ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm(); if (CC1 == CC2) return true; switch (CC1) { default: return false; case ARMCC::AL: return true; case ARMCC::HS: return CC2 == ARMCC::HI; case ARMCC::LS: return CC2 == ARMCC::LO || CC2 == ARMCC::EQ; case ARMCC::GE: return CC2 == ARMCC::GT; case ARMCC::LE: return CC2 == ARMCC::LT; } } bool ARMBaseInstrInfo::DefinesPredicate(MachineInstr *MI, std::vector &Pred) const { // FIXME: This confuses implicit_def with optional CPSR def. const MCInstrDesc &MCID = MI->getDesc(); if (!MCID.getImplicitDefs() && !MI->hasOptionalDef()) return false; bool Found = false; for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI->getOperand(i); if (MO.isReg() && MO.getReg() == ARM::CPSR) { Pred.push_back(MO); Found = true; } } return Found; } /// isPredicable - Return true if the specified instruction can be predicated. /// By default, this returns true for every instruction with a /// PredicateOperand. bool ARMBaseInstrInfo::isPredicable(MachineInstr *MI) const { if (!MI->isPredicable()) return false; if ((MI->getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON) { ARMFunctionInfo *AFI = MI->getParent()->getParent()->getInfo(); return AFI->isThumb2Function(); } return true; } /// FIXME: Works around a gcc miscompilation with -fstrict-aliasing. LLVM_ATTRIBUTE_NOINLINE static unsigned getNumJTEntries(const std::vector &JT, unsigned JTI); static unsigned getNumJTEntries(const std::vector &JT, unsigned JTI) { assert(JTI < JT.size()); return JT[JTI].MBBs.size(); } /// GetInstSize - Return the size of the specified MachineInstr. /// unsigned ARMBaseInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const { const MachineBasicBlock &MBB = *MI->getParent(); const MachineFunction *MF = MBB.getParent(); const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo(); const MCInstrDesc &MCID = MI->getDesc(); if (MCID.getSize()) return MCID.getSize(); // If this machine instr is an inline asm, measure it. if (MI->getOpcode() == ARM::INLINEASM) return getInlineAsmLength(MI->getOperand(0).getSymbolName(), *MAI); if (MI->isLabel()) return 0; unsigned Opc = MI->getOpcode(); switch (Opc) { case TargetOpcode::IMPLICIT_DEF: case TargetOpcode::KILL: case TargetOpcode::PROLOG_LABEL: case TargetOpcode::EH_LABEL: case TargetOpcode::DBG_VALUE: return 0; case ARM::MOVi16_ga_pcrel: case ARM::MOVTi16_ga_pcrel: case ARM::t2MOVi16_ga_pcrel: case ARM::t2MOVTi16_ga_pcrel: return 4; case ARM::MOVi32imm: case ARM::t2MOVi32imm: return 8; case ARM::CONSTPOOL_ENTRY: // If this machine instr is a constant pool entry, its size is recorded as // operand #2. return MI->getOperand(2).getImm(); case ARM::Int_eh_sjlj_longjmp: return 16; case ARM::tInt_eh_sjlj_longjmp: return 10; case ARM::Int_eh_sjlj_setjmp: case ARM::Int_eh_sjlj_setjmp_nofp: return 20; case ARM::tInt_eh_sjlj_setjmp: case ARM::t2Int_eh_sjlj_setjmp: case ARM::t2Int_eh_sjlj_setjmp_nofp: return 12; case ARM::BR_JTr: case ARM::BR_JTm: case ARM::BR_JTadd: case ARM::tBR_JTr: case ARM::t2BR_JT: case ARM::t2TBB_JT: case ARM::t2TBH_JT: { // These are jumptable branches, i.e. a branch followed by an inlined // jumptable. The size is 4 + 4 * number of entries. For TBB, each // entry is one byte; TBH two byte each. unsigned EntrySize = (Opc == ARM::t2TBB_JT) ? 1 : ((Opc == ARM::t2TBH_JT) ? 2 : 4); unsigned NumOps = MCID.getNumOperands(); MachineOperand JTOP = MI->getOperand(NumOps - (MI->isPredicable() ? 3 : 2)); unsigned JTI = JTOP.getIndex(); const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); assert(MJTI != 0); const std::vector &JT = MJTI->getJumpTables(); assert(JTI < JT.size()); // Thumb instructions are 2 byte aligned, but JT entries are 4 byte // 4 aligned. The assembler / linker may add 2 byte padding just before // the JT entries. The size does not include this padding; the // constant islands pass does separate bookkeeping for it. // FIXME: If we know the size of the function is less than (1 << 16) *2 // bytes, we can use 16-bit entries instead. Then there won't be an // alignment issue. unsigned InstSize = (Opc == ARM::tBR_JTr || Opc == ARM::t2BR_JT) ? 2 : 4; unsigned NumEntries = getNumJTEntries(JT, JTI); if (Opc == ARM::t2TBB_JT && (NumEntries & 1)) // Make sure the instruction that follows TBB is 2-byte aligned. // FIXME: Constant island pass should insert an "ALIGN" instruction // instead. ++NumEntries; return NumEntries * EntrySize + InstSize; } default: // Otherwise, pseudo-instruction sizes are zero. return 0; } return 0; // Not reached } void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, DebugLoc DL, unsigned DestReg, unsigned SrcReg, bool KillSrc) const { bool GPRDest = ARM::GPRRegClass.contains(DestReg); bool GPRSrc = ARM::GPRRegClass.contains(SrcReg); if (GPRDest && GPRSrc) { AddDefaultCC(AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg) .addReg(SrcReg, getKillRegState(KillSrc)))); return; } bool SPRDest = ARM::SPRRegClass.contains(DestReg); bool SPRSrc = ARM::SPRRegClass.contains(SrcReg); unsigned Opc = 0; if (SPRDest && SPRSrc) Opc = ARM::VMOVS; else if (GPRDest && SPRSrc) Opc = ARM::VMOVRS; else if (SPRDest && GPRSrc) Opc = ARM::VMOVSR; else if (ARM::DPRRegClass.contains(DestReg, SrcReg)) Opc = ARM::VMOVD; else if (ARM::QPRRegClass.contains(DestReg, SrcReg)) Opc = ARM::VORRq; if (Opc) { MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg); MIB.addReg(SrcReg, getKillRegState(KillSrc)); if (Opc == ARM::VORRq) MIB.addReg(SrcReg, getKillRegState(KillSrc)); AddDefaultPred(MIB); return; } // Generate instructions for VMOVQQ and VMOVQQQQ pseudos in place. if (ARM::QQPRRegClass.contains(DestReg, SrcReg) || ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) { const TargetRegisterInfo *TRI = &getRegisterInfo(); assert(ARM::qsub_0 + 3 == ARM::qsub_3 && "Expected contiguous enum."); unsigned EndSubReg = ARM::QQPRRegClass.contains(DestReg, SrcReg) ? ARM::qsub_1 : ARM::qsub_3; for (unsigned i = ARM::qsub_0, e = EndSubReg + 1; i != e; ++i) { unsigned Dst = TRI->getSubReg(DestReg, i); unsigned Src = TRI->getSubReg(SrcReg, i); MachineInstrBuilder Mov = AddDefaultPred(BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VORRq)) .addReg(Dst, RegState::Define) .addReg(Src, getKillRegState(KillSrc)) .addReg(Src, getKillRegState(KillSrc))); if (i == EndSubReg) { Mov->addRegisterDefined(DestReg, TRI); if (KillSrc) Mov->addRegisterKilled(SrcReg, TRI); } } return; } llvm_unreachable("Impossible reg-to-reg copy"); } static const MachineInstrBuilder &AddDReg(MachineInstrBuilder &MIB, unsigned Reg, unsigned SubIdx, unsigned State, const TargetRegisterInfo *TRI) { if (!SubIdx) return MIB.addReg(Reg, State); if (TargetRegisterInfo::isPhysicalRegister(Reg)) return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State); return MIB.addReg(Reg, State, SubIdx); } void ARMBaseInstrInfo:: storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned SrcReg, bool isKill, int FI, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const { DebugLoc DL; if (I != MBB.end()) DL = I->getDebugLoc(); MachineFunction &MF = *MBB.getParent(); MachineFrameInfo &MFI = *MF.getFrameInfo(); unsigned Align = MFI.getObjectAlignment(FI); MachineMemOperand *MMO = MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FI), MachineMemOperand::MOStore, MFI.getObjectSize(FI), Align); switch (RC->getSize()) { case 4: if (ARM::GPRRegClass.hasSubClassEq(RC)) { AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::STRi12)) .addReg(SrcReg, getKillRegState(isKill)) .addFrameIndex(FI).addImm(0).addMemOperand(MMO)); } else if (ARM::SPRRegClass.hasSubClassEq(RC)) { AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRS)) .addReg(SrcReg, getKillRegState(isKill)) .addFrameIndex(FI).addImm(0).addMemOperand(MMO)); } else llvm_unreachable("Unknown reg class!"); break; case 8: if (ARM::DPRRegClass.hasSubClassEq(RC)) { AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRD)) .addReg(SrcReg, getKillRegState(isKill)) .addFrameIndex(FI).addImm(0).addMemOperand(MMO)); } else llvm_unreachable("Unknown reg class!"); break; case 16: if (ARM::QPRRegClass.hasSubClassEq(RC)) { if (Align >= 16 && getRegisterInfo().needsStackRealignment(MF)) { AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1q64Pseudo)) .addFrameIndex(FI).addImm(16) .addReg(SrcReg, getKillRegState(isKill)) .addMemOperand(MMO)); } else { AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMQIA)) .addReg(SrcReg, getKillRegState(isKill)) .addFrameIndex(FI) .addMemOperand(MMO)); } } else llvm_unreachable("Unknown reg class!"); break; case 32: if (ARM::QQPRRegClass.hasSubClassEq(RC)) { if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) { // FIXME: It's possible to only store part of the QQ register if the // spilled def has a sub-register index. AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1d64QPseudo)) .addFrameIndex(FI).addImm(16) .addReg(SrcReg, getKillRegState(isKill)) .addMemOperand(MMO)); } else { MachineInstrBuilder MIB = AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA)) .addFrameIndex(FI)) .addMemOperand(MMO); MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI); } } else llvm_unreachable("Unknown reg class!"); break; case 64: if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) { MachineInstrBuilder MIB = AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA)) .addFrameIndex(FI)) .addMemOperand(MMO); MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI); MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI); MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI); MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI); AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI); } else llvm_unreachable("Unknown reg class!"); break; default: llvm_unreachable("Unknown reg class!"); } } unsigned ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const { switch (MI->getOpcode()) { default: break; case ARM::STRrs: case ARM::t2STRs: // FIXME: don't use t2STRs to access frame. if (MI->getOperand(1).isFI() && MI->getOperand(2).isReg() && MI->getOperand(3).isImm() && MI->getOperand(2).getReg() == 0 && MI->getOperand(3).getImm() == 0) { FrameIndex = MI->getOperand(1).getIndex(); return MI->getOperand(0).getReg(); } break; case ARM::STRi12: case ARM::t2STRi12: case ARM::tSTRspi: case ARM::VSTRD: case ARM::VSTRS: if (MI->getOperand(1).isFI() && MI->getOperand(2).isImm() && MI->getOperand(2).getImm() == 0) { FrameIndex = MI->getOperand(1).getIndex(); return MI->getOperand(0).getReg(); } break; case ARM::VST1q64Pseudo: if (MI->getOperand(0).isFI() && MI->getOperand(2).getSubReg() == 0) { FrameIndex = MI->getOperand(0).getIndex(); return MI->getOperand(2).getReg(); } break; case ARM::VSTMQIA: if (MI->getOperand(1).isFI() && MI->getOperand(0).getSubReg() == 0) { FrameIndex = MI->getOperand(1).getIndex(); return MI->getOperand(0).getReg(); } break; } return 0; } unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI, int &FrameIndex) const { const MachineMemOperand *Dummy; return MI->mayStore() && hasStoreToStackSlot(MI, Dummy, FrameIndex); } void ARMBaseInstrInfo:: loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned DestReg, int FI, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const { DebugLoc DL; if (I != MBB.end()) DL = I->getDebugLoc(); MachineFunction &MF = *MBB.getParent(); MachineFrameInfo &MFI = *MF.getFrameInfo(); unsigned Align = MFI.getObjectAlignment(FI); MachineMemOperand *MMO = MF.getMachineMemOperand( MachinePointerInfo::getFixedStack(FI), MachineMemOperand::MOLoad, MFI.getObjectSize(FI), Align); switch (RC->getSize()) { case 4: if (ARM::GPRRegClass.hasSubClassEq(RC)) { AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg) .addFrameIndex(FI).addImm(0).addMemOperand(MMO)); } else if (ARM::SPRRegClass.hasSubClassEq(RC)) { AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg) .addFrameIndex(FI).addImm(0).addMemOperand(MMO)); } else llvm_unreachable("Unknown reg class!"); break; case 8: if (ARM::DPRRegClass.hasSubClassEq(RC)) { AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg) .addFrameIndex(FI).addImm(0).addMemOperand(MMO)); } else llvm_unreachable("Unknown reg class!"); break; case 16: if (ARM::QPRRegClass.hasSubClassEq(RC)) { if (Align >= 16 && getRegisterInfo().needsStackRealignment(MF)) { AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1q64Pseudo), DestReg) .addFrameIndex(FI).addImm(16) .addMemOperand(MMO)); } else { AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg) .addFrameIndex(FI) .addMemOperand(MMO)); } } else llvm_unreachable("Unknown reg class!"); break; case 32: if (ARM::QQPRRegClass.hasSubClassEq(RC)) { if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) { AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg) .addFrameIndex(FI).addImm(16) .addMemOperand(MMO)); } else { MachineInstrBuilder MIB = AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) .addFrameIndex(FI)) .addMemOperand(MMO); MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::Define, TRI); MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::Define, TRI); MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::Define, TRI); MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::Define, TRI); MIB.addReg(DestReg, RegState::Define | RegState::Implicit); } } else llvm_unreachable("Unknown reg class!"); break; case 64: if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) { MachineInstrBuilder MIB = AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) .addFrameIndex(FI)) .addMemOperand(MMO); MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::Define, TRI); MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::Define, TRI); MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::Define, TRI); MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::Define, TRI); MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::Define, TRI); MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::Define, TRI); MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::Define, TRI); MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::Define, TRI); MIB.addReg(DestReg, RegState::Define | RegState::Implicit); } else llvm_unreachable("Unknown reg class!"); break; default: llvm_unreachable("Unknown regclass!"); } } unsigned ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const { switch (MI->getOpcode()) { default: break; case ARM::LDRrs: case ARM::t2LDRs: // FIXME: don't use t2LDRs to access frame. if (MI->getOperand(1).isFI() && MI->getOperand(2).isReg() && MI->getOperand(3).isImm() && MI->getOperand(2).getReg() == 0 && MI->getOperand(3).getImm() == 0) { FrameIndex = MI->getOperand(1).getIndex(); return MI->getOperand(0).getReg(); } break; case ARM::LDRi12: case ARM::t2LDRi12: case ARM::tLDRspi: case ARM::VLDRD: case ARM::VLDRS: if (MI->getOperand(1).isFI() && MI->getOperand(2).isImm() && MI->getOperand(2).getImm() == 0) { FrameIndex = MI->getOperand(1).getIndex(); return MI->getOperand(0).getReg(); } break; case ARM::VLD1q64Pseudo: if (MI->getOperand(1).isFI() && MI->getOperand(0).getSubReg() == 0) { FrameIndex = MI->getOperand(1).getIndex(); return MI->getOperand(0).getReg(); } break; case ARM::VLDMQIA: if (MI->getOperand(1).isFI() && MI->getOperand(0).getSubReg() == 0) { FrameIndex = MI->getOperand(1).getIndex(); return MI->getOperand(0).getReg(); } break; } return 0; } unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI, int &FrameIndex) const { const MachineMemOperand *Dummy; return MI->mayLoad() && hasLoadFromStackSlot(MI, Dummy, FrameIndex); } bool ARMBaseInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const{ // This hook gets to expand COPY instructions before they become // copyPhysReg() calls. Look for VMOVS instructions that can legally be // widened to VMOVD. We prefer the VMOVD when possible because it may be // changed into a VORR that can go down the NEON pipeline. if (!WidenVMOVS || !MI->isCopy()) return false; // Look for a copy between even S-registers. That is where we keep floats // when using NEON v2f32 instructions for f32 arithmetic. unsigned DstRegS = MI->getOperand(0).getReg(); unsigned SrcRegS = MI->getOperand(1).getReg(); if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS)) return false; const TargetRegisterInfo *TRI = &getRegisterInfo(); unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0, &ARM::DPRRegClass); unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0, &ARM::DPRRegClass); if (!DstRegD || !SrcRegD) return false; // We want to widen this into a DstRegD = VMOVD SrcRegD copy. This is only // legal if the COPY already defines the full DstRegD, and it isn't a // sub-register insertion. if (!MI->definesRegister(DstRegD, TRI) || MI->readsRegister(DstRegD, TRI)) return false; // A dead copy shouldn't show up here, but reject it just in case. if (MI->getOperand(0).isDead()) return false; // All clear, widen the COPY. DEBUG(dbgs() << "widening: " << *MI); // Get rid of the old of DstRegD. Leave it if it defines a Q-reg // or some other super-register. int ImpDefIdx = MI->findRegisterDefOperandIdx(DstRegD); if (ImpDefIdx != -1) MI->RemoveOperand(ImpDefIdx); // Change the opcode and operands. MI->setDesc(get(ARM::VMOVD)); MI->getOperand(0).setReg(DstRegD); MI->getOperand(1).setReg(SrcRegD); AddDefaultPred(MachineInstrBuilder(MI)); // We are now reading SrcRegD instead of SrcRegS. This may upset the // register scavenger and machine verifier, so we need to indicate that we // are reading an undefined value from SrcRegD, but a proper value from // SrcRegS. MI->getOperand(1).setIsUndef(); MachineInstrBuilder(MI).addReg(SrcRegS, RegState::Implicit); // SrcRegD may actually contain an unrelated value in the ssub_1 // sub-register. Don't kill it. Only kill the ssub_0 sub-register. if (MI->getOperand(1).isKill()) { MI->getOperand(1).setIsKill(false); MI->addRegisterKilled(SrcRegS, TRI, true); } DEBUG(dbgs() << "replaced by: " << *MI); return true; } MachineInstr* ARMBaseInstrInfo::emitFrameIndexDebugValue(MachineFunction &MF, int FrameIx, uint64_t Offset, const MDNode *MDPtr, DebugLoc DL) const { MachineInstrBuilder MIB = BuildMI(MF, DL, get(ARM::DBG_VALUE)) .addFrameIndex(FrameIx).addImm(0).addImm(Offset).addMetadata(MDPtr); return &*MIB; } /// Create a copy of a const pool value. Update CPI to the new index and return /// the label UID. static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) { MachineConstantPool *MCP = MF.getConstantPool(); ARMFunctionInfo *AFI = MF.getInfo(); const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI]; assert(MCPE.isMachineConstantPoolEntry() && "Expecting a machine constantpool entry!"); ARMConstantPoolValue *ACPV = static_cast(MCPE.Val.MachineCPVal); unsigned PCLabelId = AFI->createPICLabelUId(); ARMConstantPoolValue *NewCPV = 0; // FIXME: The below assumes PIC relocation model and that the function // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR // instructions, so that's probably OK, but is PIC always correct when // we get here? if (ACPV->isGlobalValue()) NewCPV = ARMConstantPoolConstant:: Create(cast(ACPV)->getGV(), PCLabelId, ARMCP::CPValue, 4); else if (ACPV->isExtSymbol()) NewCPV = ARMConstantPoolSymbol:: Create(MF.getFunction()->getContext(), cast(ACPV)->getSymbol(), PCLabelId, 4); else if (ACPV->isBlockAddress()) NewCPV = ARMConstantPoolConstant:: Create(cast(ACPV)->getBlockAddress(), PCLabelId, ARMCP::CPBlockAddress, 4); else if (ACPV->isLSDA()) NewCPV = ARMConstantPoolConstant::Create(MF.getFunction(), PCLabelId, ARMCP::CPLSDA, 4); else if (ACPV->isMachineBasicBlock()) NewCPV = ARMConstantPoolMBB:: Create(MF.getFunction()->getContext(), cast(ACPV)->getMBB(), PCLabelId, 4); else llvm_unreachable("Unexpected ARM constantpool value type!!"); CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlignment()); return PCLabelId; } void ARMBaseInstrInfo:: reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned DestReg, unsigned SubIdx, const MachineInstr *Orig, const TargetRegisterInfo &TRI) const { unsigned Opcode = Orig->getOpcode(); switch (Opcode) { default: { MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig); MI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI); MBB.insert(I, MI); break; } case ARM::tLDRpci_pic: case ARM::t2LDRpci_pic: { MachineFunction &MF = *MBB.getParent(); unsigned CPI = Orig->getOperand(1).getIndex(); unsigned PCLabelId = duplicateCPV(MF, CPI); MachineInstrBuilder MIB = BuildMI(MBB, I, Orig->getDebugLoc(), get(Opcode), DestReg) .addConstantPoolIndex(CPI).addImm(PCLabelId); MIB->setMemRefs(Orig->memoperands_begin(), Orig->memoperands_end()); break; } } } MachineInstr * ARMBaseInstrInfo::duplicate(MachineInstr *Orig, MachineFunction &MF) const { MachineInstr *MI = TargetInstrInfoImpl::duplicate(Orig, MF); switch(Orig->getOpcode()) { case ARM::tLDRpci_pic: case ARM::t2LDRpci_pic: { unsigned CPI = Orig->getOperand(1).getIndex(); unsigned PCLabelId = duplicateCPV(MF, CPI); Orig->getOperand(1).setIndex(CPI); Orig->getOperand(2).setImm(PCLabelId); break; } } return MI; } bool ARMBaseInstrInfo::produceSameValue(const MachineInstr *MI0, const MachineInstr *MI1, const MachineRegisterInfo *MRI) const { int Opcode = MI0->getOpcode(); if (Opcode == ARM::t2LDRpci || Opcode == ARM::t2LDRpci_pic || Opcode == ARM::tLDRpci || Opcode == ARM::tLDRpci_pic || Opcode == ARM::MOV_ga_dyn || Opcode == ARM::MOV_ga_pcrel || Opcode == ARM::MOV_ga_pcrel_ldr || Opcode == ARM::t2MOV_ga_dyn || Opcode == ARM::t2MOV_ga_pcrel) { if (MI1->getOpcode() != Opcode) return false; if (MI0->getNumOperands() != MI1->getNumOperands()) return false; const MachineOperand &MO0 = MI0->getOperand(1); const MachineOperand &MO1 = MI1->getOperand(1); if (MO0.getOffset() != MO1.getOffset()) return false; if (Opcode == ARM::MOV_ga_dyn || Opcode == ARM::MOV_ga_pcrel || Opcode == ARM::MOV_ga_pcrel_ldr || Opcode == ARM::t2MOV_ga_dyn || Opcode == ARM::t2MOV_ga_pcrel) // Ignore the PC labels. return MO0.getGlobal() == MO1.getGlobal(); const MachineFunction *MF = MI0->getParent()->getParent(); const MachineConstantPool *MCP = MF->getConstantPool(); int CPI0 = MO0.getIndex(); int CPI1 = MO1.getIndex(); const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0]; const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1]; bool isARMCP0 = MCPE0.isMachineConstantPoolEntry(); bool isARMCP1 = MCPE1.isMachineConstantPoolEntry(); if (isARMCP0 && isARMCP1) { ARMConstantPoolValue *ACPV0 = static_cast(MCPE0.Val.MachineCPVal); ARMConstantPoolValue *ACPV1 = static_cast(MCPE1.Val.MachineCPVal); return ACPV0->hasSameValue(ACPV1); } else if (!isARMCP0 && !isARMCP1) { return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal; } return false; } else if (Opcode == ARM::PICLDR) { if (MI1->getOpcode() != Opcode) return false; if (MI0->getNumOperands() != MI1->getNumOperands()) return false; unsigned Addr0 = MI0->getOperand(1).getReg(); unsigned Addr1 = MI1->getOperand(1).getReg(); if (Addr0 != Addr1) { if (!MRI || !TargetRegisterInfo::isVirtualRegister(Addr0) || !TargetRegisterInfo::isVirtualRegister(Addr1)) return false; // This assumes SSA form. MachineInstr *Def0 = MRI->getVRegDef(Addr0); MachineInstr *Def1 = MRI->getVRegDef(Addr1); // Check if the loaded value, e.g. a constantpool of a global address, are // the same. if (!produceSameValue(Def0, Def1, MRI)) return false; } for (unsigned i = 3, e = MI0->getNumOperands(); i != e; ++i) { // %vreg12 = PICLDR %vreg11, 0, pred:14, pred:%noreg const MachineOperand &MO0 = MI0->getOperand(i); const MachineOperand &MO1 = MI1->getOperand(i); if (!MO0.isIdenticalTo(MO1)) return false; } return true; } return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs); } /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to /// determine if two loads are loading from the same base address. It should /// only return true if the base pointers are the same and the only differences /// between the two addresses is the offset. It also returns the offsets by /// reference. bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, int64_t &Offset1, int64_t &Offset2) const { // Don't worry about Thumb: just ARM and Thumb2. if (Subtarget.isThumb1Only()) return false; if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode()) return false; switch (Load1->getMachineOpcode()) { default: return false; case ARM::LDRi12: case ARM::LDRBi12: case ARM::LDRD: case ARM::LDRH: case ARM::LDRSB: case ARM::LDRSH: case ARM::VLDRD: case ARM::VLDRS: case ARM::t2LDRi8: case ARM::t2LDRDi8: case ARM::t2LDRSHi8: case ARM::t2LDRi12: case ARM::t2LDRSHi12: break; } switch (Load2->getMachineOpcode()) { default: return false; case ARM::LDRi12: case ARM::LDRBi12: case ARM::LDRD: case ARM::LDRH: case ARM::LDRSB: case ARM::LDRSH: case ARM::VLDRD: case ARM::VLDRS: case ARM::t2LDRi8: case ARM::t2LDRDi8: case ARM::t2LDRSHi8: case ARM::t2LDRi12: case ARM::t2LDRSHi12: break; } // Check if base addresses and chain operands match. if (Load1->getOperand(0) != Load2->getOperand(0) || Load1->getOperand(4) != Load2->getOperand(4)) return false; // Index should be Reg0. if (Load1->getOperand(3) != Load2->getOperand(3)) return false; // Determine the offsets. if (isa(Load1->getOperand(1)) && isa(Load2->getOperand(1))) { Offset1 = cast(Load1->getOperand(1))->getSExtValue(); Offset2 = cast(Load2->getOperand(1))->getSExtValue(); return true; } return false; } /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should /// be scheduled togther. On some targets if two loads are loading from /// addresses in the same cache line, it's better if they are scheduled /// together. This function takes two integers that represent the load offsets /// from the common base address. It returns true if it decides it's desirable /// to schedule the two loads together. "NumLoads" is the number of loads that /// have already been scheduled after Load1. bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, int64_t Offset1, int64_t Offset2, unsigned NumLoads) const { // Don't worry about Thumb: just ARM and Thumb2. if (Subtarget.isThumb1Only()) return false; assert(Offset2 > Offset1); if ((Offset2 - Offset1) / 8 > 64) return false; if (Load1->getMachineOpcode() != Load2->getMachineOpcode()) return false; // FIXME: overly conservative? // Four loads in a row should be sufficient. if (NumLoads >= 3) return false; return true; } bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr *MI, const MachineBasicBlock *MBB, const MachineFunction &MF) const { // Debug info is never a scheduling boundary. It's necessary to be explicit // due to the special treatment of IT instructions below, otherwise a // dbg_value followed by an IT will result in the IT instruction being // considered a scheduling hazard, which is wrong. It should be the actual // instruction preceding the dbg_value instruction(s), just like it is // when debug info is not present. if (MI->isDebugValue()) return false; // Terminators and labels can't be scheduled around. if (MI->isTerminator() || MI->isLabel()) return true; // Treat the start of the IT block as a scheduling boundary, but schedule // t2IT along with all instructions following it. // FIXME: This is a big hammer. But the alternative is to add all potential // true and anti dependencies to IT block instructions as implicit operands // to the t2IT instruction. The added compile time and complexity does not // seem worth it. MachineBasicBlock::const_iterator I = MI; // Make sure to skip any dbg_value instructions while (++I != MBB->end() && I->isDebugValue()) ; if (I != MBB->end() && I->getOpcode() == ARM::t2IT) return true; // Don't attempt to schedule around any instruction that defines // a stack-oriented pointer, as it's unlikely to be profitable. This // saves compile time, because it doesn't require every single // stack slot reference to depend on the instruction that does the // modification. if (MI->definesRegister(ARM::SP)) return true; return false; } bool ARMBaseInstrInfo:: isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, unsigned ExtraPredCycles, const BranchProbability &Probability) const { if (!NumCycles) return false; // Attempt to estimate the relative costs of predication versus branching. unsigned UnpredCost = Probability.getNumerator() * NumCycles; UnpredCost /= Probability.getDenominator(); UnpredCost += 1; // The branch itself UnpredCost += Subtarget.getMispredictionPenalty() / 10; return (NumCycles + ExtraPredCycles) <= UnpredCost; } bool ARMBaseInstrInfo:: isProfitableToIfCvt(MachineBasicBlock &TMBB, unsigned TCycles, unsigned TExtra, MachineBasicBlock &FMBB, unsigned FCycles, unsigned FExtra, const BranchProbability &Probability) const { if (!TCycles || !FCycles) return false; // Attempt to estimate the relative costs of predication versus branching. unsigned TUnpredCost = Probability.getNumerator() * TCycles; TUnpredCost /= Probability.getDenominator(); uint32_t Comp = Probability.getDenominator() - Probability.getNumerator(); unsigned FUnpredCost = Comp * FCycles; FUnpredCost /= Probability.getDenominator(); unsigned UnpredCost = TUnpredCost + FUnpredCost; UnpredCost += 1; // The branch itself UnpredCost += Subtarget.getMispredictionPenalty() / 10; return (TCycles + FCycles + TExtra + FExtra) <= UnpredCost; } /// getInstrPredicate - If instruction is predicated, returns its predicate /// condition, otherwise returns AL. It also returns the condition code /// register by reference. ARMCC::CondCodes llvm::getInstrPredicate(const MachineInstr *MI, unsigned &PredReg) { int PIdx = MI->findFirstPredOperandIdx(); if (PIdx == -1) { PredReg = 0; return ARMCC::AL; } PredReg = MI->getOperand(PIdx+1).getReg(); return (ARMCC::CondCodes)MI->getOperand(PIdx).getImm(); } int llvm::getMatchingCondBranchOpcode(int Opc) { if (Opc == ARM::B) return ARM::Bcc; else if (Opc == ARM::tB) return ARM::tBcc; else if (Opc == ARM::t2B) return ARM::t2Bcc; llvm_unreachable("Unknown unconditional branch opcode!"); return 0; } /// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the /// instruction is encoded with an 'S' bit is determined by the optional CPSR /// def operand. /// /// This will go away once we can teach tblgen how to set the optional CPSR def /// operand itself. struct AddSubFlagsOpcodePair { unsigned PseudoOpc; unsigned MachineOpc; }; static AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = { {ARM::ADDSri, ARM::ADDri}, {ARM::ADDSrr, ARM::ADDrr}, {ARM::ADDSrsi, ARM::ADDrsi}, {ARM::ADDSrsr, ARM::ADDrsr}, {ARM::SUBSri, ARM::SUBri}, {ARM::SUBSrr, ARM::SUBrr}, {ARM::SUBSrsi, ARM::SUBrsi}, {ARM::SUBSrsr, ARM::SUBrsr}, {ARM::RSBSri, ARM::RSBri}, {ARM::RSBSrsi, ARM::RSBrsi}, {ARM::RSBSrsr, ARM::RSBrsr}, {ARM::t2ADDSri, ARM::t2ADDri}, {ARM::t2ADDSrr, ARM::t2ADDrr}, {ARM::t2ADDSrs, ARM::t2ADDrs}, {ARM::t2SUBSri, ARM::t2SUBri}, {ARM::t2SUBSrr, ARM::t2SUBrr}, {ARM::t2SUBSrs, ARM::t2SUBrs}, {ARM::t2RSBSri, ARM::t2RSBri}, {ARM::t2RSBSrs, ARM::t2RSBrs}, }; unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) { static const int NPairs = sizeof(AddSubFlagsOpcodeMap) / sizeof(AddSubFlagsOpcodePair); for (AddSubFlagsOpcodePair *OpcPair = &AddSubFlagsOpcodeMap[0], *End = &AddSubFlagsOpcodeMap[NPairs]; OpcPair != End; ++OpcPair) { if (OldOpc == OpcPair->PseudoOpc) { return OpcPair->MachineOpc; } } return 0; } void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, DebugLoc dl, unsigned DestReg, unsigned BaseReg, int NumBytes, ARMCC::CondCodes Pred, unsigned PredReg, const ARMBaseInstrInfo &TII, unsigned MIFlags) { bool isSub = NumBytes < 0; if (isSub) NumBytes = -NumBytes; while (NumBytes) { unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes); unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt); assert(ThisVal && "Didn't extract field correctly"); // We will handle these bits from offset, clear them. NumBytes &= ~ThisVal; assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?"); // Build the new ADD / SUB. unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri; BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg) .addReg(BaseReg, RegState::Kill).addImm(ThisVal) .addImm((unsigned)Pred).addReg(PredReg).addReg(0) .setMIFlags(MIFlags); BaseReg = DestReg; } } bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx, unsigned FrameReg, int &Offset, const ARMBaseInstrInfo &TII) { unsigned Opcode = MI.getOpcode(); const MCInstrDesc &Desc = MI.getDesc(); unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask); bool isSub = false; // Memory operands in inline assembly always use AddrMode2. if (Opcode == ARM::INLINEASM) AddrMode = ARMII::AddrMode2; if (Opcode == ARM::ADDri) { Offset += MI.getOperand(FrameRegIdx+1).getImm(); if (Offset == 0) { // Turn it into a move. MI.setDesc(TII.get(ARM::MOVr)); MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); MI.RemoveOperand(FrameRegIdx+1); Offset = 0; return true; } else if (Offset < 0) { Offset = -Offset; isSub = true; MI.setDesc(TII.get(ARM::SUBri)); } // Common case: small offset, fits into instruction. if (ARM_AM::getSOImmVal(Offset) != -1) { // Replace the FrameIndex with sp / fp MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset); Offset = 0; return true; } // Otherwise, pull as much of the immedidate into this ADDri/SUBri // as possible. unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset); unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt); // We will handle these bits from offset, clear them. Offset &= ~ThisImmVal; // Get the properly encoded SOImmVal field. assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 && "Bit extraction didn't work?"); MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal); } else { unsigned ImmIdx = 0; int InstrOffs = 0; unsigned NumBits = 0; unsigned Scale = 1; switch (AddrMode) { case ARMII::AddrMode_i12: { ImmIdx = FrameRegIdx + 1; InstrOffs = MI.getOperand(ImmIdx).getImm(); NumBits = 12; break; } case ARMII::AddrMode2: { ImmIdx = FrameRegIdx+2; InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm()); if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) InstrOffs *= -1; NumBits = 12; break; } case ARMII::AddrMode3: { ImmIdx = FrameRegIdx+2; InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm()); if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) InstrOffs *= -1; NumBits = 8; break; } case ARMII::AddrMode4: case ARMII::AddrMode6: // Can't fold any offset even if it's zero. return false; case ARMII::AddrMode5: { ImmIdx = FrameRegIdx+1; InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm()); if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) InstrOffs *= -1; NumBits = 8; Scale = 4; break; } default: llvm_unreachable("Unsupported addressing mode!"); break; } Offset += InstrOffs * Scale; assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!"); if (Offset < 0) { Offset = -Offset; isSub = true; } // Attempt to fold address comp. if opcode has offset bits if (NumBits > 0) { // Common case: small offset, fits into instruction. MachineOperand &ImmOp = MI.getOperand(ImmIdx); int ImmedOffset = Offset / Scale; unsigned Mask = (1 << NumBits) - 1; if ((unsigned)Offset <= Mask * Scale) { // Replace the FrameIndex with sp MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); // FIXME: When addrmode2 goes away, this will simplify (like the // T2 version), as the LDR.i12 versions don't need the encoding // tricks for the offset value. if (isSub) { if (AddrMode == ARMII::AddrMode_i12) ImmedOffset = -ImmedOffset; else ImmedOffset |= 1 << NumBits; } ImmOp.ChangeToImmediate(ImmedOffset); Offset = 0; return true; } // Otherwise, it didn't fit. Pull in what we can to simplify the immed. ImmedOffset = ImmedOffset & Mask; if (isSub) { if (AddrMode == ARMII::AddrMode_i12) ImmedOffset = -ImmedOffset; else ImmedOffset |= 1 << NumBits; } ImmOp.ChangeToImmediate(ImmedOffset); Offset &= ~(Mask*Scale); } } Offset = (isSub) ? -Offset : Offset; return Offset == 0; } bool ARMBaseInstrInfo:: AnalyzeCompare(const MachineInstr *MI, unsigned &SrcReg, int &CmpMask, int &CmpValue) const { switch (MI->getOpcode()) { default: break; case ARM::CMPri: case ARM::t2CMPri: SrcReg = MI->getOperand(0).getReg(); CmpMask = ~0; CmpValue = MI->getOperand(1).getImm(); return true; case ARM::TSTri: case ARM::t2TSTri: SrcReg = MI->getOperand(0).getReg(); CmpMask = MI->getOperand(1).getImm(); CmpValue = 0; return true; } return false; } /// isSuitableForMask - Identify a suitable 'and' instruction that /// operates on the given source register and applies the same mask /// as a 'tst' instruction. Provide a limited look-through for copies. /// When successful, MI will hold the found instruction. static bool isSuitableForMask(MachineInstr *&MI, unsigned SrcReg, int CmpMask, bool CommonUse) { switch (MI->getOpcode()) { case ARM::ANDri: case ARM::t2ANDri: if (CmpMask != MI->getOperand(2).getImm()) return false; if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg()) return true; break; case ARM::COPY: { // Walk down one instruction which is potentially an 'and'. const MachineInstr &Copy = *MI; MachineBasicBlock::iterator AND( llvm::next(MachineBasicBlock::iterator(MI))); if (AND == MI->getParent()->end()) return false; MI = AND; return isSuitableForMask(MI, Copy.getOperand(0).getReg(), CmpMask, true); } } return false; } /// OptimizeCompareInstr - Convert the instruction supplying the argument to the /// comparison into one that sets the zero bit in the flags register. bool ARMBaseInstrInfo:: OptimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, int CmpMask, int CmpValue, const MachineRegisterInfo *MRI) const { if (CmpValue != 0) return false; MachineRegisterInfo::def_iterator DI = MRI->def_begin(SrcReg); if (llvm::next(DI) != MRI->def_end()) // Only support one definition. return false; MachineInstr *MI = &*DI; // Masked compares sometimes use the same register as the corresponding 'and'. if (CmpMask != ~0) { if (!isSuitableForMask(MI, SrcReg, CmpMask, false)) { MI = 0; for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(SrcReg), UE = MRI->use_end(); UI != UE; ++UI) { if (UI->getParent() != CmpInstr->getParent()) continue; MachineInstr *PotentialAND = &*UI; if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true)) continue; MI = PotentialAND; break; } if (!MI) return false; } } // Conservatively refuse to convert an instruction which isn't in the same BB // as the comparison. if (MI->getParent() != CmpInstr->getParent()) return false; // Check that CPSR isn't set between the comparison instruction and the one we // want to change. MachineBasicBlock::iterator I = CmpInstr,E = MI, B = MI->getParent()->begin(); // Early exit if CmpInstr is at the beginning of the BB. if (I == B) return false; --I; for (; I != E; --I) { const MachineInstr &Instr = *I; for (unsigned IO = 0, EO = Instr.getNumOperands(); IO != EO; ++IO) { const MachineOperand &MO = Instr.getOperand(IO); if (!MO.isReg()) continue; // This instruction modifies or uses CPSR after the one we want to // change. We can't do this transformation. if (MO.getReg() == ARM::CPSR) return false; } if (I == B) // The 'and' is below the comparison instruction. return false; } // Set the "zero" bit in CPSR. switch (MI->getOpcode()) { default: break; case ARM::RSBrr: case ARM::RSBri: case ARM::RSCrr: case ARM::RSCri: case ARM::ADDrr: case ARM::ADDri: case ARM::ADCrr: case ARM::ADCri: case ARM::SUBrr: case ARM::SUBri: case ARM::SBCrr: case ARM::SBCri: case ARM::t2RSBri: case ARM::t2ADDrr: case ARM::t2ADDri: case ARM::t2ADCrr: case ARM::t2ADCri: case ARM::t2SUBrr: case ARM::t2SUBri: case ARM::t2SBCrr: case ARM::t2SBCri: case ARM::ANDrr: case ARM::ANDri: case ARM::t2ANDrr: case ARM::t2ANDri: case ARM::ORRrr: case ARM::ORRri: case ARM::t2ORRrr: case ARM::t2ORRri: case ARM::EORrr: case ARM::EORri: case ARM::t2EORrr: case ARM::t2EORri: { // Scan forward for the use of CPSR, if it's a conditional code requires // checking of V bit, then this is not safe to do. If we can't find the // CPSR use (i.e. used in another block), then it's not safe to perform // the optimization. bool isSafe = false; I = CmpInstr; E = MI->getParent()->end(); while (!isSafe && ++I != E) { const MachineInstr &Instr = *I; for (unsigned IO = 0, EO = Instr.getNumOperands(); !isSafe && IO != EO; ++IO) { const MachineOperand &MO = Instr.getOperand(IO); if (!MO.isReg() || MO.getReg() != ARM::CPSR) continue; if (MO.isDef()) { isSafe = true; break; } // Condition code is after the operand before CPSR. ARMCC::CondCodes CC = (ARMCC::CondCodes)Instr.getOperand(IO-1).getImm(); switch (CC) { default: isSafe = true; break; case ARMCC::VS: case ARMCC::VC: case ARMCC::GE: case ARMCC::LT: case ARMCC::GT: case ARMCC::LE: return false; } } } if (!isSafe) return false; // Toggle the optional operand to CPSR. MI->getOperand(5).setReg(ARM::CPSR); MI->getOperand(5).setIsDef(true); CmpInstr->eraseFromParent(); return true; } } return false; } bool ARMBaseInstrInfo::FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI, unsigned Reg, MachineRegisterInfo *MRI) const { // Fold large immediates into add, sub, or, xor. unsigned DefOpc = DefMI->getOpcode(); if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm) return false; if (!DefMI->getOperand(1).isImm()) // Could be t2MOVi32imm return false; if (!MRI->hasOneNonDBGUse(Reg)) return false; unsigned UseOpc = UseMI->getOpcode(); unsigned NewUseOpc = 0; uint32_t ImmVal = (uint32_t)DefMI->getOperand(1).getImm(); uint32_t SOImmValV1 = 0, SOImmValV2 = 0; bool Commute = false; switch (UseOpc) { default: return false; case ARM::SUBrr: case ARM::ADDrr: case ARM::ORRrr: case ARM::EORrr: case ARM::t2SUBrr: case ARM::t2ADDrr: case ARM::t2ORRrr: case ARM::t2EORrr: { Commute = UseMI->getOperand(2).getReg() != Reg; switch (UseOpc) { default: break; case ARM::SUBrr: { if (Commute) return false; ImmVal = -ImmVal; NewUseOpc = ARM::SUBri; // Fallthrough } case ARM::ADDrr: case ARM::ORRrr: case ARM::EORrr: { if (!ARM_AM::isSOImmTwoPartVal(ImmVal)) return false; SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal); SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal); switch (UseOpc) { default: break; case ARM::ADDrr: NewUseOpc = ARM::ADDri; break; case ARM::ORRrr: NewUseOpc = ARM::ORRri; break; case ARM::EORrr: NewUseOpc = ARM::EORri; break; } break; } case ARM::t2SUBrr: { if (Commute) return false; ImmVal = -ImmVal; NewUseOpc = ARM::t2SUBri; // Fallthrough } case ARM::t2ADDrr: case ARM::t2ORRrr: case ARM::t2EORrr: { if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal)) return false; SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal); SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal); switch (UseOpc) { default: break; case ARM::t2ADDrr: NewUseOpc = ARM::t2ADDri; break; case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break; case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break; } break; } } } } unsigned OpIdx = Commute ? 2 : 1; unsigned Reg1 = UseMI->getOperand(OpIdx).getReg(); bool isKill = UseMI->getOperand(OpIdx).isKill(); unsigned NewReg = MRI->createVirtualRegister(MRI->getRegClass(Reg)); AddDefaultCC(AddDefaultPred(BuildMI(*UseMI->getParent(), *UseMI, UseMI->getDebugLoc(), get(NewUseOpc), NewReg) .addReg(Reg1, getKillRegState(isKill)) .addImm(SOImmValV1))); UseMI->setDesc(get(NewUseOpc)); UseMI->getOperand(1).setReg(NewReg); UseMI->getOperand(1).setIsKill(); UseMI->getOperand(2).ChangeToImmediate(SOImmValV2); DefMI->eraseFromParent(); return true; } unsigned ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData, const MachineInstr *MI) const { if (!ItinData || ItinData->isEmpty()) return 1; const MCInstrDesc &Desc = MI->getDesc(); unsigned Class = Desc.getSchedClass(); unsigned UOps = ItinData->Itineraries[Class].NumMicroOps; if (UOps) return UOps; unsigned Opc = MI->getOpcode(); switch (Opc) { default: llvm_unreachable("Unexpected multi-uops instruction!"); break; case ARM::VLDMQIA: case ARM::VSTMQIA: return 2; // The number of uOps for load / store multiple are determined by the number // registers. // // On Cortex-A8, each pair of register loads / stores can be scheduled on the // same cycle. The scheduling for the first load / store must be done // separately by assuming the the address is not 64-bit aligned. // // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address // is not 64-bit aligned, then AGU would take an extra cycle. For VFP / NEON // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1. case ARM::VLDMDIA: case ARM::VLDMDIA_UPD: case ARM::VLDMDDB_UPD: case ARM::VLDMSIA: case ARM::VLDMSIA_UPD: case ARM::VLDMSDB_UPD: case ARM::VSTMDIA: case ARM::VSTMDIA_UPD: case ARM::VSTMDDB_UPD: case ARM::VSTMSIA: case ARM::VSTMSIA_UPD: case ARM::VSTMSDB_UPD: { unsigned NumRegs = MI->getNumOperands() - Desc.getNumOperands(); return (NumRegs / 2) + (NumRegs % 2) + 1; } case ARM::LDMIA_RET: case ARM::LDMIA: case ARM::LDMDA: case ARM::LDMDB: case ARM::LDMIB: case ARM::LDMIA_UPD: case ARM::LDMDA_UPD: case ARM::LDMDB_UPD: case ARM::LDMIB_UPD: case ARM::STMIA: case ARM::STMDA: case ARM::STMDB: case ARM::STMIB: case ARM::STMIA_UPD: case ARM::STMDA_UPD: case ARM::STMDB_UPD: case ARM::STMIB_UPD: case ARM::tLDMIA: case ARM::tLDMIA_UPD: case ARM::tSTMIA_UPD: case ARM::tPOP_RET: case ARM::tPOP: case ARM::tPUSH: case ARM::t2LDMIA_RET: case ARM::t2LDMIA: case ARM::t2LDMDB: case ARM::t2LDMIA_UPD: case ARM::t2LDMDB_UPD: case ARM::t2STMIA: case ARM::t2STMDB: case ARM::t2STMIA_UPD: case ARM::t2STMDB_UPD: { unsigned NumRegs = MI->getNumOperands() - Desc.getNumOperands() + 1; if (Subtarget.isCortexA8()) { if (NumRegs < 4) return 2; // 4 registers would be issued: 2, 2. // 5 registers would be issued: 2, 2, 1. UOps = (NumRegs / 2); if (NumRegs % 2) ++UOps; return UOps; } else if (Subtarget.isCortexA9()) { UOps = (NumRegs / 2); // If there are odd number of registers or if it's not 64-bit aligned, // then it takes an extra AGU (Address Generation Unit) cycle. if ((NumRegs % 2) || !MI->hasOneMemOperand() || (*MI->memoperands_begin())->getAlignment() < 8) ++UOps; return UOps; } else { // Assume the worst. return NumRegs; } } } } int ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData, const MCInstrDesc &DefMCID, unsigned DefClass, unsigned DefIdx, unsigned DefAlign) const { int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1; if (RegNo <= 0) // Def is the address writeback. return ItinData->getOperandCycle(DefClass, DefIdx); int DefCycle; if (Subtarget.isCortexA8()) { // (regno / 2) + (regno % 2) + 1 DefCycle = RegNo / 2 + 1; if (RegNo % 2) ++DefCycle; } else if (Subtarget.isCortexA9()) { DefCycle = RegNo; bool isSLoad = false; switch (DefMCID.getOpcode()) { default: break; case ARM::VLDMSIA: case ARM::VLDMSIA_UPD: case ARM::VLDMSDB_UPD: isSLoad = true; break; } // If there are odd number of 'S' registers or if it's not 64-bit aligned, // then it takes an extra cycle. if ((isSLoad && (RegNo % 2)) || DefAlign < 8) ++DefCycle; } else { // Assume the worst. DefCycle = RegNo + 2; } return DefCycle; } int ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData, const MCInstrDesc &DefMCID, unsigned DefClass, unsigned DefIdx, unsigned DefAlign) const { int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1; if (RegNo <= 0) // Def is the address writeback. return ItinData->getOperandCycle(DefClass, DefIdx); int DefCycle; if (Subtarget.isCortexA8()) { // 4 registers would be issued: 1, 2, 1. // 5 registers would be issued: 1, 2, 2. DefCycle = RegNo / 2; if (DefCycle < 1) DefCycle = 1; // Result latency is issue cycle + 2: E2. DefCycle += 2; } else if (Subtarget.isCortexA9()) { DefCycle = (RegNo / 2); // If there are odd number of registers or if it's not 64-bit aligned, // then it takes an extra AGU (Address Generation Unit) cycle. if ((RegNo % 2) || DefAlign < 8) ++DefCycle; // Result latency is AGU cycles + 2. DefCycle += 2; } else { // Assume the worst. DefCycle = RegNo + 2; } return DefCycle; } int ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData, const MCInstrDesc &UseMCID, unsigned UseClass, unsigned UseIdx, unsigned UseAlign) const { int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1; if (RegNo <= 0) return ItinData->getOperandCycle(UseClass, UseIdx); int UseCycle; if (Subtarget.isCortexA8()) { // (regno / 2) + (regno % 2) + 1 UseCycle = RegNo / 2 + 1; if (RegNo % 2) ++UseCycle; } else if (Subtarget.isCortexA9()) { UseCycle = RegNo; bool isSStore = false; switch (UseMCID.getOpcode()) { default: break; case ARM::VSTMSIA: case ARM::VSTMSIA_UPD: case ARM::VSTMSDB_UPD: isSStore = true; break; } // If there are odd number of 'S' registers or if it's not 64-bit aligned, // then it takes an extra cycle. if ((isSStore && (RegNo % 2)) || UseAlign < 8) ++UseCycle; } else { // Assume the worst. UseCycle = RegNo + 2; } return UseCycle; } int ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData, const MCInstrDesc &UseMCID, unsigned UseClass, unsigned UseIdx, unsigned UseAlign) const { int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1; if (RegNo <= 0) return ItinData->getOperandCycle(UseClass, UseIdx); int UseCycle; if (Subtarget.isCortexA8()) { UseCycle = RegNo / 2; if (UseCycle < 2) UseCycle = 2; // Read in E3. UseCycle += 2; } else if (Subtarget.isCortexA9()) { UseCycle = (RegNo / 2); // If there are odd number of registers or if it's not 64-bit aligned, // then it takes an extra AGU (Address Generation Unit) cycle. if ((RegNo % 2) || UseAlign < 8) ++UseCycle; } else { // Assume the worst. UseCycle = 1; } return UseCycle; } int ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, const MCInstrDesc &DefMCID, unsigned DefIdx, unsigned DefAlign, const MCInstrDesc &UseMCID, unsigned UseIdx, unsigned UseAlign) const { unsigned DefClass = DefMCID.getSchedClass(); unsigned UseClass = UseMCID.getSchedClass(); if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands()) return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); // This may be a def / use of a variable_ops instruction, the operand // latency might be determinable dynamically. Let the target try to // figure it out. int DefCycle = -1; bool LdmBypass = false; switch (DefMCID.getOpcode()) { default: DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); break; case ARM::VLDMDIA: case ARM::VLDMDIA_UPD: case ARM::VLDMDDB_UPD: case ARM::VLDMSIA: case ARM::VLDMSIA_UPD: case ARM::VLDMSDB_UPD: DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign); break; case ARM::LDMIA_RET: case ARM::LDMIA: case ARM::LDMDA: case ARM::LDMDB: case ARM::LDMIB: case ARM::LDMIA_UPD: case ARM::LDMDA_UPD: case ARM::LDMDB_UPD: case ARM::LDMIB_UPD: case ARM::tLDMIA: case ARM::tLDMIA_UPD: case ARM::tPUSH: case ARM::t2LDMIA_RET: case ARM::t2LDMIA: case ARM::t2LDMDB: case ARM::t2LDMIA_UPD: case ARM::t2LDMDB_UPD: LdmBypass = 1; DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign); break; } if (DefCycle == -1) // We can't seem to determine the result latency of the def, assume it's 2. DefCycle = 2; int UseCycle = -1; switch (UseMCID.getOpcode()) { default: UseCycle = ItinData->getOperandCycle(UseClass, UseIdx); break; case ARM::VSTMDIA: case ARM::VSTMDIA_UPD: case ARM::VSTMDDB_UPD: case ARM::VSTMSIA: case ARM::VSTMSIA_UPD: case ARM::VSTMSDB_UPD: UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign); break; case ARM::STMIA: case ARM::STMDA: case ARM::STMDB: case ARM::STMIB: case ARM::STMIA_UPD: case ARM::STMDA_UPD: case ARM::STMDB_UPD: case ARM::STMIB_UPD: case ARM::tSTMIA_UPD: case ARM::tPOP_RET: case ARM::tPOP: case ARM::t2STMIA: case ARM::t2STMDB: case ARM::t2STMIA_UPD: case ARM::t2STMDB_UPD: UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign); break; } if (UseCycle == -1) // Assume it's read in the first stage. UseCycle = 1; UseCycle = DefCycle - UseCycle + 1; if (UseCycle > 0) { if (LdmBypass) { // It's a variable_ops instruction so we can't use DefIdx here. Just use // first def operand. if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1, UseClass, UseIdx)) --UseCycle; } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx, UseClass, UseIdx)) { --UseCycle; } } return UseCycle; } int ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, const MachineInstr *DefMI, unsigned DefIdx, const MachineInstr *UseMI, unsigned UseIdx) const { if (DefMI->isCopyLike() || DefMI->isInsertSubreg() || DefMI->isRegSequence() || DefMI->isImplicitDef()) return 1; if (!ItinData || ItinData->isEmpty()) return DefMI->mayLoad() ? 3 : 1; const MCInstrDesc &DefMCID = DefMI->getDesc(); const MCInstrDesc &UseMCID = UseMI->getDesc(); const MachineOperand &DefMO = DefMI->getOperand(DefIdx); if (DefMO.getReg() == ARM::CPSR) { if (DefMI->getOpcode() == ARM::FMSTAT) { // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?) return Subtarget.isCortexA9() ? 1 : 20; } // CPSR set and branch can be paired in the same cycle. if (UseMI->isBranch()) return 0; } unsigned DefAlign = DefMI->hasOneMemOperand() ? (*DefMI->memoperands_begin())->getAlignment() : 0; unsigned UseAlign = UseMI->hasOneMemOperand() ? (*UseMI->memoperands_begin())->getAlignment() : 0; int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign, UseMCID, UseIdx, UseAlign); if (Latency > 1 && (Subtarget.isCortexA8() || Subtarget.isCortexA9())) { // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2] // variants are one cycle cheaper. switch (DefMCID.getOpcode()) { default: break; case ARM::LDRrs: case ARM::LDRBrs: { unsigned ShOpVal = DefMI->getOperand(3).getImm(); unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); if (ShImm == 0 || (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) --Latency; break; } case ARM::t2LDRs: case ARM::t2LDRBs: case ARM::t2LDRHs: case ARM::t2LDRSHs: { // Thumb2 mode: lsl only. unsigned ShAmt = DefMI->getOperand(3).getImm(); if (ShAmt == 0 || ShAmt == 2) --Latency; break; } } } if (DefAlign < 8 && Subtarget.isCortexA9()) switch (DefMCID.getOpcode()) { default: break; case ARM::VLD1q8: case ARM::VLD1q16: case ARM::VLD1q32: case ARM::VLD1q64: case ARM::VLD1q8wb_fixed: case ARM::VLD1q16wb_fixed: case ARM::VLD1q32wb_fixed: case ARM::VLD1q64wb_fixed: case ARM::VLD1q8wb_register: case ARM::VLD1q16wb_register: case ARM::VLD1q32wb_register: case ARM::VLD1q64wb_register: case ARM::VLD2d8: case ARM::VLD2d16: case ARM::VLD2d32: case ARM::VLD2q8: case ARM::VLD2q16: case ARM::VLD2q32: case ARM::VLD2d8_UPD: case ARM::VLD2d16_UPD: case ARM::VLD2d32_UPD: case ARM::VLD2q8_UPD: case ARM::VLD2q16_UPD: case ARM::VLD2q32_UPD: case ARM::VLD3d8: case ARM::VLD3d16: case ARM::VLD3d32: case ARM::VLD1d64T: case ARM::VLD3d8_UPD: case ARM::VLD3d16_UPD: case ARM::VLD3d32_UPD: case ARM::VLD1d64Twb_fixed: case ARM::VLD1d64Twb_register: case ARM::VLD3q8_UPD: case ARM::VLD3q16_UPD: case ARM::VLD3q32_UPD: case ARM::VLD4d8: case ARM::VLD4d16: case ARM::VLD4d32: case ARM::VLD1d64Q: case ARM::VLD4d8_UPD: case ARM::VLD4d16_UPD: case ARM::VLD4d32_UPD: case ARM::VLD1d64Qwb_fixed: case ARM::VLD1d64Qwb_register: case ARM::VLD4q8_UPD: case ARM::VLD4q16_UPD: case ARM::VLD4q32_UPD: case ARM::VLD1DUPq8: case ARM::VLD1DUPq16: case ARM::VLD1DUPq32: case ARM::VLD1DUPq8wb_fixed: case ARM::VLD1DUPq16wb_fixed: case ARM::VLD1DUPq32wb_fixed: case ARM::VLD1DUPq8wb_register: case ARM::VLD1DUPq16wb_register: case ARM::VLD1DUPq32wb_register: case ARM::VLD2DUPd8: case ARM::VLD2DUPd16: case ARM::VLD2DUPd32: case ARM::VLD2DUPd8_UPD: case ARM::VLD2DUPd16_UPD: case ARM::VLD2DUPd32_UPD: case ARM::VLD4DUPd8: case ARM::VLD4DUPd16: case ARM::VLD4DUPd32: case ARM::VLD4DUPd8_UPD: case ARM::VLD4DUPd16_UPD: case ARM::VLD4DUPd32_UPD: case ARM::VLD1LNd8: case ARM::VLD1LNd16: case ARM::VLD1LNd32: case ARM::VLD1LNd8_UPD: case ARM::VLD1LNd16_UPD: case ARM::VLD1LNd32_UPD: case ARM::VLD2LNd8: case ARM::VLD2LNd16: case ARM::VLD2LNd32: case ARM::VLD2LNq16: case ARM::VLD2LNq32: case ARM::VLD2LNd8_UPD: case ARM::VLD2LNd16_UPD: case ARM::VLD2LNd32_UPD: case ARM::VLD2LNq16_UPD: case ARM::VLD2LNq32_UPD: case ARM::VLD4LNd8: case ARM::VLD4LNd16: case ARM::VLD4LNd32: case ARM::VLD4LNq16: case ARM::VLD4LNq32: case ARM::VLD4LNd8_UPD: case ARM::VLD4LNd16_UPD: case ARM::VLD4LNd32_UPD: case ARM::VLD4LNq16_UPD: case ARM::VLD4LNq32_UPD: // If the address is not 64-bit aligned, the latencies of these // instructions increases by one. ++Latency; break; } return Latency; } int ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, SDNode *DefNode, unsigned DefIdx, SDNode *UseNode, unsigned UseIdx) const { if (!DefNode->isMachineOpcode()) return 1; const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode()); if (isZeroCost(DefMCID.Opcode)) return 0; if (!ItinData || ItinData->isEmpty()) return DefMCID.mayLoad() ? 3 : 1; if (!UseNode->isMachineOpcode()) { int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx); if (Subtarget.isCortexA9()) return Latency <= 2 ? 1 : Latency - 1; else return Latency <= 3 ? 1 : Latency - 2; } const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode()); const MachineSDNode *DefMN = dyn_cast(DefNode); unsigned DefAlign = !DefMN->memoperands_empty() ? (*DefMN->memoperands_begin())->getAlignment() : 0; const MachineSDNode *UseMN = dyn_cast(UseNode); unsigned UseAlign = !UseMN->memoperands_empty() ? (*UseMN->memoperands_begin())->getAlignment() : 0; int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign, UseMCID, UseIdx, UseAlign); if (Latency > 1 && (Subtarget.isCortexA8() || Subtarget.isCortexA9())) { // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2] // variants are one cycle cheaper. switch (DefMCID.getOpcode()) { default: break; case ARM::LDRrs: case ARM::LDRBrs: { unsigned ShOpVal = cast(DefNode->getOperand(2))->getZExtValue(); unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); if (ShImm == 0 || (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) --Latency; break; } case ARM::t2LDRs: case ARM::t2LDRBs: case ARM::t2LDRHs: case ARM::t2LDRSHs: { // Thumb2 mode: lsl only. unsigned ShAmt = cast(DefNode->getOperand(2))->getZExtValue(); if (ShAmt == 0 || ShAmt == 2) --Latency; break; } } } if (DefAlign < 8 && Subtarget.isCortexA9()) switch (DefMCID.getOpcode()) { default: break; case ARM::VLD1q8Pseudo: case ARM::VLD1q16Pseudo: case ARM::VLD1q32Pseudo: case ARM::VLD1q64Pseudo: case ARM::VLD1q8PseudoWB_register: case ARM::VLD1q16PseudoWB_register: case ARM::VLD1q32PseudoWB_register: case ARM::VLD1q64PseudoWB_register: case ARM::VLD1q8PseudoWB_fixed: case ARM::VLD1q16PseudoWB_fixed: case ARM::VLD1q32PseudoWB_fixed: case ARM::VLD1q64PseudoWB_fixed: case ARM::VLD2d8Pseudo: case ARM::VLD2d16Pseudo: case ARM::VLD2d32Pseudo: case ARM::VLD2q8Pseudo: case ARM::VLD2q16Pseudo: case ARM::VLD2q32Pseudo: case ARM::VLD2d8Pseudo_UPD: case ARM::VLD2d16Pseudo_UPD: case ARM::VLD2d32Pseudo_UPD: case ARM::VLD2q8Pseudo_UPD: case ARM::VLD2q16Pseudo_UPD: case ARM::VLD2q32Pseudo_UPD: case ARM::VLD3d8Pseudo: case ARM::VLD3d16Pseudo: case ARM::VLD3d32Pseudo: case ARM::VLD1d64TPseudo: case ARM::VLD3d8Pseudo_UPD: case ARM::VLD3d16Pseudo_UPD: case ARM::VLD3d32Pseudo_UPD: case ARM::VLD3q8Pseudo_UPD: case ARM::VLD3q16Pseudo_UPD: case ARM::VLD3q32Pseudo_UPD: case ARM::VLD3q8oddPseudo: case ARM::VLD3q16oddPseudo: case ARM::VLD3q32oddPseudo: case ARM::VLD3q8oddPseudo_UPD: case ARM::VLD3q16oddPseudo_UPD: case ARM::VLD3q32oddPseudo_UPD: case ARM::VLD4d8Pseudo: case ARM::VLD4d16Pseudo: case ARM::VLD4d32Pseudo: case ARM::VLD1d64QPseudo: case ARM::VLD4d8Pseudo_UPD: case ARM::VLD4d16Pseudo_UPD: case ARM::VLD4d32Pseudo_UPD: case ARM::VLD4q8Pseudo_UPD: case ARM::VLD4q16Pseudo_UPD: case ARM::VLD4q32Pseudo_UPD: case ARM::VLD4q8oddPseudo: case ARM::VLD4q16oddPseudo: case ARM::VLD4q32oddPseudo: case ARM::VLD4q8oddPseudo_UPD: case ARM::VLD4q16oddPseudo_UPD: case ARM::VLD4q32oddPseudo_UPD: case ARM::VLD1DUPq8Pseudo: case ARM::VLD1DUPq16Pseudo: case ARM::VLD1DUPq32Pseudo: case ARM::VLD1DUPq8PseudoWB_fixed: case ARM::VLD1DUPq16PseudoWB_fixed: case ARM::VLD1DUPq32PseudoWB_fixed: case ARM::VLD1DUPq8PseudoWB_register: case ARM::VLD1DUPq16PseudoWB_register: case ARM::VLD1DUPq32PseudoWB_register: case ARM::VLD2DUPd8Pseudo: case ARM::VLD2DUPd16Pseudo: case ARM::VLD2DUPd32Pseudo: case ARM::VLD2DUPd8Pseudo_UPD: case ARM::VLD2DUPd16Pseudo_UPD: case ARM::VLD2DUPd32Pseudo_UPD: case ARM::VLD4DUPd8Pseudo: case ARM::VLD4DUPd16Pseudo: case ARM::VLD4DUPd32Pseudo: case ARM::VLD4DUPd8Pseudo_UPD: case ARM::VLD4DUPd16Pseudo_UPD: case ARM::VLD4DUPd32Pseudo_UPD: case ARM::VLD1LNq8Pseudo: case ARM::VLD1LNq16Pseudo: case ARM::VLD1LNq32Pseudo: case ARM::VLD1LNq8Pseudo_UPD: case ARM::VLD1LNq16Pseudo_UPD: case ARM::VLD1LNq32Pseudo_UPD: case ARM::VLD2LNd8Pseudo: case ARM::VLD2LNd16Pseudo: case ARM::VLD2LNd32Pseudo: case ARM::VLD2LNq16Pseudo: case ARM::VLD2LNq32Pseudo: case ARM::VLD2LNd8Pseudo_UPD: case ARM::VLD2LNd16Pseudo_UPD: case ARM::VLD2LNd32Pseudo_UPD: case ARM::VLD2LNq16Pseudo_UPD: case ARM::VLD2LNq32Pseudo_UPD: case ARM::VLD4LNd8Pseudo: case ARM::VLD4LNd16Pseudo: case ARM::VLD4LNd32Pseudo: case ARM::VLD4LNq16Pseudo: case ARM::VLD4LNq32Pseudo: case ARM::VLD4LNd8Pseudo_UPD: case ARM::VLD4LNd16Pseudo_UPD: case ARM::VLD4LNd32Pseudo_UPD: case ARM::VLD4LNq16Pseudo_UPD: case ARM::VLD4LNq32Pseudo_UPD: // If the address is not 64-bit aligned, the latencies of these // instructions increases by one. ++Latency; break; } return Latency; } int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, const MachineInstr *MI, unsigned *PredCost) const { if (MI->isCopyLike() || MI->isInsertSubreg() || MI->isRegSequence() || MI->isImplicitDef()) return 1; if (!ItinData || ItinData->isEmpty()) return 1; const MCInstrDesc &MCID = MI->getDesc(); unsigned Class = MCID.getSchedClass(); unsigned UOps = ItinData->Itineraries[Class].NumMicroOps; if (PredCost && MCID.hasImplicitDefOfPhysReg(ARM::CPSR)) // When predicated, CPSR is an additional source operand for CPSR updating // instructions, this apparently increases their latencies. *PredCost = 1; if (UOps) return ItinData->getStageLatency(Class); return getNumMicroOps(ItinData, MI); } int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, SDNode *Node) const { if (!Node->isMachineOpcode()) return 1; if (!ItinData || ItinData->isEmpty()) return 1; unsigned Opcode = Node->getMachineOpcode(); switch (Opcode) { default: return ItinData->getStageLatency(get(Opcode).getSchedClass()); case ARM::VLDMQIA: case ARM::VSTMQIA: return 2; } } bool ARMBaseInstrInfo:: hasHighOperandLatency(const InstrItineraryData *ItinData, const MachineRegisterInfo *MRI, const MachineInstr *DefMI, unsigned DefIdx, const MachineInstr *UseMI, unsigned UseIdx) const { unsigned DDomain = DefMI->getDesc().TSFlags & ARMII::DomainMask; unsigned UDomain = UseMI->getDesc().TSFlags & ARMII::DomainMask; if (Subtarget.isCortexA8() && (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP)) // CortexA8 VFP instructions are not pipelined. return true; // Hoist VFP / NEON instructions with 4 or higher latency. int Latency = getOperandLatency(ItinData, DefMI, DefIdx, UseMI, UseIdx); if (Latency <= 3) return false; return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON || UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON; } bool ARMBaseInstrInfo:: hasLowDefLatency(const InstrItineraryData *ItinData, const MachineInstr *DefMI, unsigned DefIdx) const { if (!ItinData || ItinData->isEmpty()) return false; unsigned DDomain = DefMI->getDesc().TSFlags & ARMII::DomainMask; if (DDomain == ARMII::DomainGeneral) { unsigned DefClass = DefMI->getDesc().getSchedClass(); int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); return (DefCycle != -1 && DefCycle <= 2); } return false; } bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr *MI, StringRef &ErrInfo) const { if (convertAddSubFlagsOpcode(MI->getOpcode())) { ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG"; return false; } return true; } bool ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc, unsigned &AddSubOpc, bool &NegAcc, bool &HasLane) const { DenseMap::const_iterator I = MLxEntryMap.find(Opcode); if (I == MLxEntryMap.end()) return false; const ARM_MLxEntry &Entry = ARM_MLxTable[I->second]; MulOpc = Entry.MulOpc; AddSubOpc = Entry.AddSubOpc; NegAcc = Entry.NegAcc; HasLane = Entry.HasLane; return true; } //===----------------------------------------------------------------------===// // Execution domains. //===----------------------------------------------------------------------===// // // Some instructions go down the NEON pipeline, some go down the VFP pipeline, // and some can go down both. The vmov instructions go down the VFP pipeline, // but they can be changed to vorr equivalents that are executed by the NEON // pipeline. // // We use the following execution domain numbering: // enum ARMExeDomain { ExeGeneric = 0, ExeVFP = 1, ExeNEON = 2 }; // // Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h // std::pair ARMBaseInstrInfo::getExecutionDomain(const MachineInstr *MI) const { // VMOVD is a VFP instruction, but can be changed to NEON if it isn't // predicated. if (MI->getOpcode() == ARM::VMOVD && !isPredicated(MI)) return std::make_pair(ExeVFP, (1<getDesc().TSFlags & ARMII::DomainMask; if (Domain & ARMII::DomainNEON) return std::make_pair(ExeNEON, 0); // Certain instructions can go either way on Cortex-A8. // Treat them as NEON instructions. if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8()) return std::make_pair(ExeNEON, 0); if (Domain & ARMII::DomainVFP) return std::make_pair(ExeVFP, 0); return std::make_pair(ExeGeneric, 0); } void ARMBaseInstrInfo::setExecutionDomain(MachineInstr *MI, unsigned Domain) const { // We only know how to change VMOVD into VORR. assert(MI->getOpcode() == ARM::VMOVD && "Can only swizzle VMOVD"); if (Domain != ExeNEON) return; // Zap the predicate operands. assert(!isPredicated(MI) && "Cannot predicate a VORRd"); MI->RemoveOperand(3); MI->RemoveOperand(2); // Change to a VORRd which requires two identical use operands. MI->setDesc(get(ARM::VORRd)); // Add the extra source operand and new predicates. // This will go before any implicit ops. AddDefaultPred(MachineInstrBuilder(MI).addOperand(MI->getOperand(1))); }