//===-- PredicateSimplifier.cpp - Path Sensitive Simplifier ---------------===// // // The LLVM Compiler Infrastructure // // This file was developed by Nick Lewycky and is distributed under the // University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Path-sensitive optimizer. In a branch where x == y, replace uses of // x with y. Permits further optimization, such as the elimination of // the unreachable call: // // void test(int *p, int *q) // { // if (p != q) // return; // // if (*p != *q) // foo(); // unreachable // } // //===----------------------------------------------------------------------===// // // This pass focusses on four properties; equals, not equals, less-than // and less-than-or-equals-to. The greater-than forms are also held just // to allow walking from a lesser node to a greater one. These properties // are stored in a lattice; LE can become LT or EQ, NE can become LT or GT. // // These relationships define a graph between values of the same type. Each // Value is stored in a map table that retrieves the associated Node. This // is how EQ relationships are stored; the map contains pointers to the // same node. The node contains a most canonical Value* form and the list of // known relationships. // // If two nodes are known to be inequal, then they will contain pointers to // each other with an "NE" relationship. If node getNode(%x) is less than // getNode(%y), then the %x node will contain <%y, GT> and %y will contain // <%x, LT>. This allows us to tie nodes together into a graph like this: // // %a < %b < %c < %d // // with four nodes representing the properties. The InequalityGraph provides // querying with "isRelatedBy" and mutators "addEquality" and "addInequality". // To find a relationship, we start with one of the nodes any binary search // through its list to find where the relationships with the second node start. // Then we iterate through those to find the first relationship that dominates // our context node. // // To create these properties, we wait until a branch or switch instruction // implies that a particular value is true (or false). The VRPSolver is // responsible for analyzing the variable and seeing what new inferences // can be made from each property. For example: // // %P = seteq int* %ptr, null // %a = or bool %P, %Q // br bool %a label %cond_true, label %cond_false // // For the true branch, the VRPSolver will start with %a EQ true and look at // the definition of %a and find that it can infer that %P and %Q are both // true. From %P being true, it can infer that %ptr NE null. For the false // branch it can't infer anything from the "or" instruction. // // Besides branches, we can also infer properties from instruction that may // have undefined behaviour in certain cases. For example, the dividend of // a division may never be zero. After the division instruction, we may assume // that the dividend is not equal to zero. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "predsimplify" #include "llvm/Transforms/Scalar.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Instructions.h" #include "llvm/Pass.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/SetOperations.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Analysis/ET-Forest.h" #include "llvm/Support/CFG.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/InstVisitor.h" #include "llvm/Transforms/Utils/Local.h" #include #include #include using namespace llvm; STATISTIC(NumVarsReplaced, "Number of argument substitutions"); STATISTIC(NumInstruction , "Number of instructions removed"); STATISTIC(NumSimple , "Number of simple replacements"); STATISTIC(NumBlocks , "Number of blocks marked unreachable"); namespace { // SLT SGT ULT UGT EQ // 0 1 0 1 0 -- GT 10 // 0 1 0 1 1 -- GE 11 // 0 1 1 0 0 -- SGTULT 12 // 0 1 1 0 1 -- SGEULE 13 // 0 1 1 1 0 -- SGTUNE 14 // 0 1 1 1 1 -- SGEUANY 15 // 1 0 0 1 0 -- SLTUGT 18 // 1 0 0 1 1 -- SLEUGE 19 // 1 0 1 0 0 -- LT 20 // 1 0 1 0 1 -- LE 21 // 1 0 1 1 0 -- SLTUNE 22 // 1 0 1 1 1 -- SLEUANY 23 // 1 1 0 1 0 -- SNEUGT 26 // 1 1 0 1 1 -- SANYUGE 27 // 1 1 1 0 0 -- SNEULT 28 // 1 1 1 0 1 -- SANYULE 29 // 1 1 1 1 0 -- NE 30 enum LatticeBits { EQ_BIT = 1, UGT_BIT = 2, ULT_BIT = 4, SGT_BIT = 8, SLT_BIT = 16 }; enum LatticeVal { GT = SGT_BIT | UGT_BIT, GE = GT | EQ_BIT, LT = SLT_BIT | ULT_BIT, LE = LT | EQ_BIT, NE = SLT_BIT | SGT_BIT | ULT_BIT | UGT_BIT, SGTULT = SGT_BIT | ULT_BIT, SGEULE = SGTULT | EQ_BIT, SLTUGT = SLT_BIT | UGT_BIT, SLEUGE = SLTUGT | EQ_BIT, SNEULT = SLT_BIT | SGT_BIT | ULT_BIT, SNEUGT = SLT_BIT | SGT_BIT | UGT_BIT, SLTUNE = SLT_BIT | ULT_BIT | UGT_BIT, SGTUNE = SGT_BIT | ULT_BIT | UGT_BIT, SLEUANY = SLT_BIT | ULT_BIT | UGT_BIT | EQ_BIT, SGEUANY = SGT_BIT | ULT_BIT | UGT_BIT | EQ_BIT, SANYULE = SLT_BIT | SGT_BIT | ULT_BIT | EQ_BIT, SANYUGE = SLT_BIT | SGT_BIT | UGT_BIT | EQ_BIT }; static bool validPredicate(LatticeVal LV) { switch (LV) { case GT: case GE: case LT: case LE: case NE: case SGTULT: case SGTUNE: case SGEULE: case SLTUGT: case SLTUNE: case SLEUGE: case SNEULT: case SNEUGT: case SLEUANY: case SGEUANY: case SANYULE: case SANYUGE: return true; default: return false; } } /// reversePredicate - reverse the direction of the inequality static LatticeVal reversePredicate(LatticeVal LV) { unsigned reverse = LV ^ (SLT_BIT|SGT_BIT|ULT_BIT|UGT_BIT); //preserve EQ_BIT if ((reverse & (SLT_BIT|SGT_BIT)) == 0) reverse |= (SLT_BIT|SGT_BIT); if ((reverse & (ULT_BIT|UGT_BIT)) == 0) reverse |= (ULT_BIT|UGT_BIT); LatticeVal Rev = static_cast(reverse); assert(validPredicate(Rev) && "Failed reversing predicate."); return Rev; } /// The InequalityGraph stores the relationships between values. /// Each Value in the graph is assigned to a Node. Nodes are pointer /// comparable for equality. The caller is expected to maintain the logical /// consistency of the system. /// /// The InequalityGraph class may invalidate Node*s after any mutator call. /// @brief The InequalityGraph stores the relationships between values. class VISIBILITY_HIDDEN InequalityGraph { ETNode *TreeRoot; InequalityGraph(); // DO NOT IMPLEMENT InequalityGraph(InequalityGraph &); // DO NOT IMPLEMENT public: explicit InequalityGraph(ETNode *TreeRoot) : TreeRoot(TreeRoot) {} class Node; /// This is a StrictWeakOrdering predicate that sorts ETNodes by how many /// children they have. With this, you can iterate through a list sorted by /// this operation and the first matching entry is the most specific match /// for your basic block. The order provided is total; ETNodes with the /// same number of children are sorted by pointer address. struct VISIBILITY_HIDDEN OrderByDominance { bool operator()(const ETNode *LHS, const ETNode *RHS) const { unsigned LHS_spread = LHS->getDFSNumOut() - LHS->getDFSNumIn(); unsigned RHS_spread = RHS->getDFSNumOut() - RHS->getDFSNumIn(); if (LHS_spread != RHS_spread) return LHS_spread < RHS_spread; else return LHS < RHS; } }; /// An Edge is contained inside a Node making one end of the edge implicit /// and contains a pointer to the other end. The edge contains a lattice /// value specifying the relationship between the two nodes. Further, there /// is an ETNode specifying which subtree of the dominator the edge applies. class VISIBILITY_HIDDEN Edge { public: Edge(unsigned T, LatticeVal V, ETNode *ST) : To(T), LV(V), Subtree(ST) {} unsigned To; LatticeVal LV; ETNode *Subtree; bool operator<(const Edge &edge) const { if (To != edge.To) return To < edge.To; else return OrderByDominance()(Subtree, edge.Subtree); } bool operator<(unsigned to) const { return To < to; } }; /// A single node in the InequalityGraph. This stores the canonical Value /// for the node, as well as the relationships with the neighbours. /// /// Because the lists are intended to be used for traversal, it is invalid /// for the node to list itself in LessEqual or GreaterEqual lists. The /// fact that a node is equal to itself is implied, and may be checked /// with pointer comparison. /// @brief A single node in the InequalityGraph. class VISIBILITY_HIDDEN Node { friend class InequalityGraph; typedef SmallVector RelationsType; RelationsType Relations; Value *Canonical; // TODO: can this idea improve performance? //friend class std::vector; //Node(Node &N) { RelationsType.swap(N.RelationsType); } public: typedef RelationsType::iterator iterator; typedef RelationsType::const_iterator const_iterator; Node(Value *V) : Canonical(V) {} private: #ifndef NDEBUG public: virtual ~Node() {} virtual void dump() const { dump(*cerr.stream()); } private: void dump(std::ostream &os) const { os << *getValue() << ":\n"; for (Node::const_iterator NI = begin(), NE = end(); NI != NE; ++NI) { static const std::string names[32] = { "000000", "000001", "000002", "000003", "000004", "000005", "000006", "000007", "000008", "000009", " >", " >=", " s>u<", "s>=u<=", " s>", " s>=", "000016", "000017", " s", "s<=u>=", " <", " <=", " s<", " s<=", "000024", "000025", " u>", " u>=", " u<", " u<=", " !=", "000031" }; os << " " << names[NI->LV] << " " << NI->To << "(" << NI->Subtree << ")\n"; } } #endif public: iterator begin() { return Relations.begin(); } iterator end() { return Relations.end(); } const_iterator begin() const { return Relations.begin(); } const_iterator end() const { return Relations.end(); } iterator find(unsigned n, ETNode *Subtree) { iterator E = end(); for (iterator I = std::lower_bound(begin(), E, n); I != E && I->To == n; ++I) { if (Subtree->DominatedBy(I->Subtree)) return I; } return E; } const_iterator find(unsigned n, ETNode *Subtree) const { const_iterator E = end(); for (const_iterator I = std::lower_bound(begin(), E, n); I != E && I->To == n; ++I) { if (Subtree->DominatedBy(I->Subtree)) return I; } return E; } Value *getValue() const { return Canonical; } /// Updates the lattice value for a given node. Create a new entry if /// one doesn't exist, otherwise it merges the values. The new lattice /// value must not be inconsistent with any previously existing value. void update(unsigned n, LatticeVal R, ETNode *Subtree) { assert(validPredicate(R) && "Invalid predicate."); iterator I = find(n, Subtree); if (I == end()) { Edge edge(n, R, Subtree); iterator Insert = std::lower_bound(begin(), end(), edge); Relations.insert(Insert, edge); } else { LatticeVal LV = static_cast(I->LV & R); assert(validPredicate(LV) && "Invalid union of lattice values."); if (LV != I->LV) { if (Subtree == I->Subtree) I->LV = LV; else { assert(Subtree->DominatedBy(I->Subtree) && "Find returned subtree that doesn't apply."); Edge edge(n, R, Subtree); iterator Insert = std::lower_bound(begin(), end(), edge); Relations.insert(Insert, edge); } } } } }; private: struct VISIBILITY_HIDDEN NodeMapEdge { Value *V; unsigned index; ETNode *Subtree; NodeMapEdge(Value *V, unsigned index, ETNode *Subtree) : V(V), index(index), Subtree(Subtree) {} bool operator==(const NodeMapEdge &RHS) const { return V == RHS.V && Subtree == RHS.Subtree; } bool operator<(const NodeMapEdge &RHS) const { if (V != RHS.V) return V < RHS.V; return OrderByDominance()(Subtree, RHS.Subtree); } bool operator<(Value *RHS) const { return V < RHS; } }; typedef std::vector NodeMapType; NodeMapType NodeMap; std::vector Nodes; std::vector > Constants; void initializeConstant(Constant *C, unsigned index) { ConstantInt *CI = dyn_cast(C); if (!CI) return; // XXX: instead of O(n) calls to addInequality, just find the 2, 3 or 4 // nodes that are nearest less than or greater than (signed or unsigned). for (std::vector >::iterator I = Constants.begin(), E = Constants.end(); I != E; ++I) { ConstantInt *Other = I->first; if (CI->getType() == Other->getType()) { unsigned lv = 0; if (CI->getZExtValue() < Other->getZExtValue()) lv |= ULT_BIT; else lv |= UGT_BIT; if (CI->getSExtValue() < Other->getSExtValue()) lv |= SLT_BIT; else lv |= SGT_BIT; LatticeVal LV = static_cast(lv); assert(validPredicate(LV) && "Not a valid predicate."); if (!isRelatedBy(index, I->second, TreeRoot, LV)) addInequality(index, I->second, TreeRoot, LV); } } Constants.push_back(std::make_pair(CI, index)); } public: /// node - returns the node object at a given index retrieved from getNode. /// Index zero is reserved and may not be passed in here. The pointer /// returned is valid until the next call to newNode or getOrInsertNode. Node *node(unsigned index) { assert(index != 0 && "Zero index is reserved for not found."); assert(index <= Nodes.size() && "Index out of range."); return &Nodes[index-1]; } /// Returns the node currently representing Value V, or zero if no such /// node exists. unsigned getNode(Value *V, ETNode *Subtree) { NodeMapType::iterator E = NodeMap.end(); NodeMapEdge Edge(V, 0, Subtree); NodeMapType::iterator I = std::lower_bound(NodeMap.begin(), E, Edge); while (I != E && I->V == V) { if (Subtree->DominatedBy(I->Subtree)) return I->index; ++I; } return 0; } /// getOrInsertNode - always returns a valid node index, creating a node /// to match the Value if needed. unsigned getOrInsertNode(Value *V, ETNode *Subtree) { if (unsigned n = getNode(V, Subtree)) return n; else return newNode(V); } /// newNode - creates a new node for a given Value and returns the index. unsigned newNode(Value *V) { Nodes.push_back(Node(V)); NodeMapEdge MapEntry = NodeMapEdge(V, Nodes.size(), TreeRoot); assert(!std::binary_search(NodeMap.begin(), NodeMap.end(), MapEntry) && "Attempt to create a duplicate Node."); NodeMap.insert(std::lower_bound(NodeMap.begin(), NodeMap.end(), MapEntry), MapEntry); if (Constant *C = dyn_cast(V)) initializeConstant(C, MapEntry.index); return MapEntry.index; } /// If the Value is in the graph, return the canonical form. Otherwise, /// return the original Value. Value *canonicalize(Value *V, ETNode *Subtree) { if (isa(V)) return V; if (unsigned n = getNode(V, Subtree)) return node(n)->getValue(); else return V; } /// isRelatedBy - true iff n1 op n2 bool isRelatedBy(unsigned n1, unsigned n2, ETNode *Subtree, LatticeVal LV) { if (n1 == n2) return LV & EQ_BIT; Node *N1 = node(n1); Node::iterator I = N1->find(n2, Subtree), E = N1->end(); if (I != E) return (I->LV & LV) == I->LV; return false; } // The add* methods assume that your input is logically valid and may // assertion-fail or infinitely loop if you attempt a contradiction. void addEquality(unsigned n, Value *V, ETNode *Subtree) { assert(canonicalize(node(n)->getValue(), Subtree) == node(n)->getValue() && "Node's 'canonical' choice isn't best within this subtree."); // Suppose that we are given "%x -> node #1 (%y)". The problem is that // we may already have "%z -> node #2 (%x)" somewhere above us in the // graph. We need to find those edges and add "%z -> node #1 (%y)" // to keep the lookups canonical. std::vector ToRepoint; ToRepoint.push_back(V); if (unsigned Conflict = getNode(V, Subtree)) { // XXX: NodeMap.size() exceeds 68000 entries compiling kimwitu++! // This adds 57 seconds to the otherwise 3 second build. Unacceptable. // // IDEA: could we iterate 1..Nodes.size() calling getNode? It's // O(n log n) but kimwitu++ only has about 300 nodes. for (NodeMapType::iterator I = NodeMap.begin(), E = NodeMap.end(); I != E; ++I) { if (I->index == Conflict && Subtree->DominatedBy(I->Subtree)) ToRepoint.push_back(I->V); } } for (std::vector::iterator VI = ToRepoint.begin(), VE = ToRepoint.end(); VI != VE; ++VI) { Value *V = *VI; // XXX: review this code. This may be doing too many insertions. NodeMapEdge Edge(V, n, Subtree); NodeMapType::iterator E = NodeMap.end(); NodeMapType::iterator I = std::lower_bound(NodeMap.begin(), E, Edge); if (I == E || I->V != V || I->Subtree != Subtree) { // New Value NodeMap.insert(I, Edge); } else if (I != E && I->V == V && I->Subtree == Subtree) { // Update best choice I->index = n; } #ifndef NDEBUG Node *N = node(n); if (isa(V)) { if (isa(N->getValue())) { assert(V == N->getValue() && "Constant equals different constant?"); } } #endif } } /// addInequality - Sets n1 op n2. /// It is also an error to call this on an inequality that is already true. void addInequality(unsigned n1, unsigned n2, ETNode *Subtree, LatticeVal LV1) { assert(n1 != n2 && "A node can't be inequal to itself."); if (LV1 != NE) assert(!isRelatedBy(n1, n2, Subtree, reversePredicate(LV1)) && "Contradictory inequality."); Node *N1 = node(n1); Node *N2 = node(n2); // Suppose we're adding %n1 < %n2. Find all the %a < %n1 and // add %a < %n2 too. This keeps the graph fully connected. if (LV1 != NE) { // Someone with a head for this sort of logic, please review this. // Given that %x SLTUGT %y and %a SLEUANY %x, what is the relationship // between %a and %y? I believe the below code is correct, but I don't // think it's the most efficient solution. unsigned LV1_s = LV1 & (SLT_BIT|SGT_BIT); unsigned LV1_u = LV1 & (ULT_BIT|UGT_BIT); for (Node::iterator I = N1->begin(), E = N1->end(); I != E; ++I) { if (I->LV != NE && I->To != n2) { ETNode *Local_Subtree = NULL; if (Subtree->DominatedBy(I->Subtree)) Local_Subtree = Subtree; else if (I->Subtree->DominatedBy(Subtree)) Local_Subtree = I->Subtree; if (Local_Subtree) { unsigned new_relationship = 0; LatticeVal ILV = reversePredicate(I->LV); unsigned ILV_s = ILV & (SLT_BIT|SGT_BIT); unsigned ILV_u = ILV & (ULT_BIT|UGT_BIT); if (LV1_s != (SLT_BIT|SGT_BIT) && ILV_s == LV1_s) new_relationship |= ILV_s; if (LV1_u != (ULT_BIT|UGT_BIT) && ILV_u == LV1_u) new_relationship |= ILV_u; if (new_relationship) { if ((new_relationship & (SLT_BIT|SGT_BIT)) == 0) new_relationship |= (SLT_BIT|SGT_BIT); if ((new_relationship & (ULT_BIT|UGT_BIT)) == 0) new_relationship |= (ULT_BIT|UGT_BIT); if ((LV1 & EQ_BIT) && (ILV & EQ_BIT)) new_relationship |= EQ_BIT; LatticeVal NewLV = static_cast(new_relationship); node(I->To)->update(n2, NewLV, Local_Subtree); N2->update(I->To, reversePredicate(NewLV), Local_Subtree); } } } } for (Node::iterator I = N2->begin(), E = N2->end(); I != E; ++I) { if (I->LV != NE && I->To != n1) { ETNode *Local_Subtree = NULL; if (Subtree->DominatedBy(I->Subtree)) Local_Subtree = Subtree; else if (I->Subtree->DominatedBy(Subtree)) Local_Subtree = I->Subtree; if (Local_Subtree) { unsigned new_relationship = 0; unsigned ILV_s = I->LV & (SLT_BIT|SGT_BIT); unsigned ILV_u = I->LV & (ULT_BIT|UGT_BIT); if (LV1_s != (SLT_BIT|SGT_BIT) && ILV_s == LV1_s) new_relationship |= ILV_s; if (LV1_u != (ULT_BIT|UGT_BIT) && ILV_u == LV1_u) new_relationship |= ILV_u; if (new_relationship) { if ((new_relationship & (SLT_BIT|SGT_BIT)) == 0) new_relationship |= (SLT_BIT|SGT_BIT); if ((new_relationship & (ULT_BIT|UGT_BIT)) == 0) new_relationship |= (ULT_BIT|UGT_BIT); if ((LV1 & EQ_BIT) && (I->LV & EQ_BIT)) new_relationship |= EQ_BIT; LatticeVal NewLV = static_cast(new_relationship); N1->update(I->To, NewLV, Local_Subtree); node(I->To)->update(n1, reversePredicate(NewLV), Local_Subtree); } } } } } N1->update(n2, LV1, Subtree); N2->update(n1, reversePredicate(LV1), Subtree); } /// Removes a Value from the graph, but does not delete any nodes. As this /// method does not delete Nodes, V may not be the canonical choice for /// a node with any relationships. It is invalid to call newNode on a Value /// that has been removed. void remove(Value *V) { for (unsigned i = 0; i < NodeMap.size();) { NodeMapType::iterator I = NodeMap.begin()+i; assert((node(I->index)->getValue() != V || node(I->index)->begin() == node(I->index)->end()) && "Tried to delete in-use node."); if (I->V == V) { #ifndef NDEBUG if (node(I->index)->getValue() == V) node(I->index)->Canonical = NULL; #endif NodeMap.erase(I); } else ++i; } } #ifndef NDEBUG virtual ~InequalityGraph() {} virtual void dump() { dump(*cerr.stream()); } void dump(std::ostream &os) { std::set VisitedNodes; for (NodeMapType::const_iterator I = NodeMap.begin(), E = NodeMap.end(); I != E; ++I) { Node *N = node(I->index); os << *I->V << " == " << I->index << "(" << I->Subtree << ")\n"; if (VisitedNodes.insert(N).second) { os << I->index << ". "; if (!N->getValue()) os << "(deleted node)\n"; else N->dump(os); } } } #endif }; /// UnreachableBlocks keeps tracks of blocks that are for one reason or /// another discovered to be unreachable. This is used to cull the graph when /// analyzing instructions, and to mark blocks with the "unreachable" /// terminator instruction after the function has executed. class VISIBILITY_HIDDEN UnreachableBlocks { private: std::vector DeadBlocks; public: /// mark - mark a block as dead void mark(BasicBlock *BB) { std::vector::iterator E = DeadBlocks.end(); std::vector::iterator I = std::lower_bound(DeadBlocks.begin(), E, BB); if (I == E || *I != BB) DeadBlocks.insert(I, BB); } /// isDead - returns whether a block is known to be dead already bool isDead(BasicBlock *BB) { std::vector::iterator E = DeadBlocks.end(); std::vector::iterator I = std::lower_bound(DeadBlocks.begin(), E, BB); return I != E && *I == BB; } /// kill - replace the dead blocks' terminator with an UnreachableInst. bool kill() { bool modified = false; for (std::vector::iterator I = DeadBlocks.begin(), E = DeadBlocks.end(); I != E; ++I) { BasicBlock *BB = *I; DOUT << "unreachable block: " << BB->getName() << "\n"; for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) { BasicBlock *Succ = *SI; Succ->removePredecessor(BB); } TerminatorInst *TI = BB->getTerminator(); TI->replaceAllUsesWith(UndefValue::get(TI->getType())); TI->eraseFromParent(); new UnreachableInst(BB); ++NumBlocks; modified = true; } DeadBlocks.clear(); return modified; } }; /// VRPSolver keeps track of how changes to one variable affect other /// variables, and forwards changes along to the InequalityGraph. It /// also maintains the correct choice for "canonical" in the IG. /// @brief VRPSolver calculates inferences from a new relationship. class VISIBILITY_HIDDEN VRPSolver { private: struct Operation { Value *LHS, *RHS; ICmpInst::Predicate Op; BasicBlock *ContextBB; Instruction *ContextInst; }; std::deque WorkList; InequalityGraph &IG; UnreachableBlocks &UB; ETForest *Forest; ETNode *Top; BasicBlock *TopBB; Instruction *TopInst; bool &modified; typedef InequalityGraph::Node Node; /// IdomI - Determines whether one Instruction dominates another. bool IdomI(Instruction *I1, Instruction *I2) const { BasicBlock *BB1 = I1->getParent(), *BB2 = I2->getParent(); if (BB1 == BB2) { if (isa(I1)) return false; if (isa(I2)) return true; if (isa(I1) && !isa(I2)) return true; if (!isa(I1) && isa(I2)) return false; for (BasicBlock::const_iterator I = BB1->begin(), E = BB1->end(); I != E; ++I) { if (&*I == I1) return true; if (&*I == I2) return false; } assert(!"Instructions not found in parent BasicBlock?"); } else { return Forest->properlyDominates(BB1, BB2); } return false; } /// Returns true if V1 is a better canonical value than V2. bool compare(Value *V1, Value *V2) const { if (isa(V1)) return !isa(V2); else if (isa(V2)) return false; else if (isa(V1)) return !isa(V2); else if (isa(V2)) return false; Instruction *I1 = dyn_cast(V1); Instruction *I2 = dyn_cast(V2); if (!I1 || !I2) return V1->getNumUses() < V2->getNumUses(); return IdomI(I1, I2); } // below - true if the Instruction is dominated by the current context // block or instruction bool below(Instruction *I) { if (TopInst) return IdomI(TopInst, I); else { ETNode *Node = Forest->getNodeForBlock(I->getParent()); return Node == Top || Node->DominatedBy(Top); } } bool makeEqual(Value *V1, Value *V2) { DOUT << "makeEqual(" << *V1 << ", " << *V2 << ")\n"; if (V1 == V2) return true; if (isa(V1) && isa(V2)) return false; unsigned n1 = IG.getNode(V1, Top), n2 = IG.getNode(V2, Top); if (n1 && n2) { if (n1 == n2) return true; if (IG.isRelatedBy(n1, n2, Top, NE)) return false; } if (n1) assert(V1 == IG.node(n1)->getValue() && "Value isn't canonical."); if (n2) assert(V2 == IG.node(n2)->getValue() && "Value isn't canonical."); if (compare(V2, V1)) { std::swap(V1, V2); std::swap(n1, n2); } assert(!isa(V2) && "Tried to remove a constant."); SetVector Remove; if (n2) Remove.insert(n2); if (n1 && n2) { // Suppose we're being told that %x == %y, and %x <= %z and %y >= %z. // We can't just merge %x and %y because the relationship with %z would // be EQ and that's invalid. What we're doing is looking for any nodes // %z such that %x <= %z and %y >= %z, and vice versa. // // Also handle %a <= %b and %c <= %a when adding %b <= %c. Node *N1 = IG.node(n1); Node::iterator end = N1->end(); for (unsigned i = 0; i < Remove.size(); ++i) { Node *N = IG.node(Remove[i]); Value *V = N->getValue(); for (Node::iterator I = N->begin(), E = N->end(); I != E; ++I) { if (I->LV & EQ_BIT) { if (Top == I->Subtree || Top->DominatedBy(I->Subtree)) { Node::iterator NI = N1->find(I->To, Top); if (NI != end) { if (!(NI->LV & EQ_BIT)) return false; if (isRelatedBy(V, IG.node(NI->To)->getValue(), ICmpInst::ICMP_NE)) return false; Remove.insert(NI->To); } } } } } // See if one of the nodes about to be removed is actually a better // canonical choice than n1. unsigned orig_n1 = n1; std::vector::iterator DontRemove = Remove.end(); for (std::vector::iterator I = Remove.begin()+1 /* skip n2 */, E = Remove.end(); I != E; ++I) { unsigned n = *I; Value *V = IG.node(n)->getValue(); if (compare(V, V1)) { V1 = V; n1 = n; DontRemove = I; } } if (DontRemove != Remove.end()) { unsigned n = *DontRemove; Remove.remove(n); Remove.insert(orig_n1); } } // We'd like to allow makeEqual on two values to perform a simple // substitution without every creating nodes in the IG whenever possible. // // The first iteration through this loop operates on V2 before going // through the Remove list and operating on those too. If all of the // iterations performed simple replacements then we exit early. bool exitEarly = true; unsigned i = 0; for (Value *R = V2; i == 0 || i < Remove.size(); ++i) { if (i) R = IG.node(Remove[i])->getValue(); // skip n2. // Try to replace the whole instruction. If we can, we're done. Instruction *I2 = dyn_cast(R); if (I2 && below(I2)) { std::vector ToNotify; for (Value::use_iterator UI = R->use_begin(), UE = R->use_end(); UI != UE;) { Use &TheUse = UI.getUse(); ++UI; if (Instruction *I = dyn_cast(TheUse.getUser())) ToNotify.push_back(I); } DOUT << "Simply removing " << *I2 << ", replacing with " << *V1 << "\n"; I2->replaceAllUsesWith(V1); // leave it dead; it'll get erased later. ++NumInstruction; modified = true; for (std::vector::iterator II = ToNotify.begin(), IE = ToNotify.end(); II != IE; ++II) { opsToDef(*II); } continue; } // Otherwise, replace all dominated uses. for (Value::use_iterator UI = R->use_begin(), UE = R->use_end(); UI != UE;) { Use &TheUse = UI.getUse(); ++UI; if (Instruction *I = dyn_cast(TheUse.getUser())) { if (below(I)) { TheUse.set(V1); modified = true; ++NumVarsReplaced; opsToDef(I); } } } // If that killed the instruction, stop here. if (I2 && isInstructionTriviallyDead(I2)) { DOUT << "Killed all uses of " << *I2 << ", replacing with " << *V1 << "\n"; continue; } // If we make it to here, then we will need to create a node for N1. // Otherwise, we can skip out early! exitEarly = false; } if (exitEarly) return true; // Create N1. // XXX: this should call newNode, but instead the node might be created // in isRelatedBy. That's also a fixme. if (!n1) n1 = IG.getOrInsertNode(V1, Top); // Migrate relationships from removed nodes to N1. Node *N1 = IG.node(n1); for (std::vector::iterator I = Remove.begin(), E = Remove.end(); I != E; ++I) { unsigned n = *I; Node *N = IG.node(n); for (Node::iterator NI = N->begin(), NE = N->end(); NI != NE; ++NI) { if (Top == NI->Subtree || NI->Subtree->DominatedBy(Top)) { if (NI->To == n1) { assert((NI->LV & EQ_BIT) && "Node inequal to itself."); continue; } if (Remove.count(NI->To)) continue; IG.node(NI->To)->update(n1, reversePredicate(NI->LV), Top); N1->update(NI->To, NI->LV, Top); } } } // Point V2 (and all items in Remove) to N1. if (!n2) IG.addEquality(n1, V2, Top); else { for (std::vector::iterator I = Remove.begin(), E = Remove.end(); I != E; ++I) { IG.addEquality(n1, IG.node(*I)->getValue(), Top); } } // If !Remove.empty() then V2 = Remove[0]->getValue(). // Even when Remove is empty, we still want to process V2. i = 0; for (Value *R = V2; i == 0 || i < Remove.size(); ++i) { if (i) R = IG.node(Remove[i])->getValue(); // skip n2. if (Instruction *I2 = dyn_cast(R)) defToOps(I2); for (Value::use_iterator UI = V2->use_begin(), UE = V2->use_end(); UI != UE;) { Use &TheUse = UI.getUse(); ++UI; if (Instruction *I = dyn_cast(TheUse.getUser())) { opsToDef(I); } } } return true; } /// cmpInstToLattice - converts an CmpInst::Predicate to lattice value /// Requires that the lattice value be valid; does not accept ICMP_EQ. static LatticeVal cmpInstToLattice(ICmpInst::Predicate Pred) { switch (Pred) { case ICmpInst::ICMP_EQ: assert(!"No matching lattice value."); return static_cast(EQ_BIT); default: assert(!"Invalid 'icmp' predicate."); case ICmpInst::ICMP_NE: return NE; case ICmpInst::ICMP_UGT: return SNEUGT; case ICmpInst::ICMP_UGE: return SANYUGE; case ICmpInst::ICMP_ULT: return SNEULT; case ICmpInst::ICMP_ULE: return SANYULE; case ICmpInst::ICMP_SGT: return SGTUNE; case ICmpInst::ICMP_SGE: return SGEUANY; case ICmpInst::ICMP_SLT: return SLTUNE; case ICmpInst::ICMP_SLE: return SLEUANY; } } public: VRPSolver(InequalityGraph &IG, UnreachableBlocks &UB, ETForest *Forest, bool &modified, BasicBlock *TopBB) : IG(IG), UB(UB), Forest(Forest), Top(Forest->getNodeForBlock(TopBB)), TopBB(TopBB), TopInst(NULL), modified(modified) {} VRPSolver(InequalityGraph &IG, UnreachableBlocks &UB, ETForest *Forest, bool &modified, Instruction *TopInst) : IG(IG), UB(UB), Forest(Forest), TopInst(TopInst), modified(modified) { TopBB = TopInst->getParent(); Top = Forest->getNodeForBlock(TopBB); } bool isRelatedBy(Value *V1, Value *V2, ICmpInst::Predicate Pred) const { if (Constant *C1 = dyn_cast(V1)) if (Constant *C2 = dyn_cast(V2)) return ConstantExpr::getCompare(Pred, C1, C2) == ConstantInt::getTrue(); // XXX: this is lousy. If we're passed a Constant, then we might miss // some relationships if it isn't in the IG because the relationships // added by initializeConstant are missing. if (isa(V1)) IG.getOrInsertNode(V1, Top); if (isa(V2)) IG.getOrInsertNode(V2, Top); if (unsigned n1 = IG.getNode(V1, Top)) if (unsigned n2 = IG.getNode(V2, Top)) { if (n1 == n2) return Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_SLE || Pred == ICmpInst::ICMP_SGE; if (Pred == ICmpInst::ICMP_EQ) return false; return IG.isRelatedBy(n1, n2, Top, cmpInstToLattice(Pred)); } return false; } /// add - adds a new property to the work queue void add(Value *V1, Value *V2, ICmpInst::Predicate Pred, Instruction *I = NULL) { DOUT << "adding " << *V1 << " " << Pred << " " << *V2; if (I) DOUT << " context: " << *I; else DOUT << " default context"; DOUT << "\n"; WorkList.push_back(Operation()); Operation &O = WorkList.back(); O.LHS = V1, O.RHS = V2, O.Op = Pred, O.ContextInst = I; O.ContextBB = I ? I->getParent() : TopBB; } /// defToOps - Given an instruction definition that we've learned something /// new about, find any new relationships between its operands. void defToOps(Instruction *I) { Instruction *NewContext = below(I) ? I : TopInst; Value *Canonical = IG.canonicalize(I, Top); if (BinaryOperator *BO = dyn_cast(I)) { const Type *Ty = BO->getType(); assert(!Ty->isFPOrFPVector() && "Float in work queue!"); Value *Op0 = IG.canonicalize(BO->getOperand(0), Top); Value *Op1 = IG.canonicalize(BO->getOperand(1), Top); // TODO: "and bool true, %x" EQ %y then %x EQ %y. switch (BO->getOpcode()) { case Instruction::And: { // "and int %a, %b" EQ -1 then %a EQ -1 and %b EQ -1 // "and bool %a, %b" EQ true then %a EQ true and %b EQ true ConstantInt *CI = ConstantInt::getAllOnesValue(Ty); if (Canonical == CI) { add(CI, Op0, ICmpInst::ICMP_EQ, NewContext); add(CI, Op1, ICmpInst::ICMP_EQ, NewContext); } } break; case Instruction::Or: { // "or int %a, %b" EQ 0 then %a EQ 0 and %b EQ 0 // "or bool %a, %b" EQ false then %a EQ false and %b EQ false Constant *Zero = Constant::getNullValue(Ty); if (Canonical == Zero) { add(Zero, Op0, ICmpInst::ICMP_EQ, NewContext); add(Zero, Op1, ICmpInst::ICMP_EQ, NewContext); } } break; case Instruction::Xor: { // "xor bool true, %a" EQ true then %a EQ false // "xor bool true, %a" EQ false then %a EQ true // "xor bool false, %a" EQ true then %a EQ true // "xor bool false, %a" EQ false then %a EQ false // "xor int %c, %a" EQ %c then %a EQ 0 // "xor int %c, %a" NE %c then %a NE 0 // 1. Repeat all of the above, with order of operands reversed. Value *LHS = Op0; Value *RHS = Op1; if (!isa(LHS)) std::swap(LHS, RHS); if (ConstantInt *CI = dyn_cast(Canonical)) { if (ConstantInt *Arg = dyn_cast(LHS)) { add(RHS, ConstantInt::get(CI->getType(), CI->getZExtValue() ^ Arg->getZExtValue()), ICmpInst::ICMP_EQ, NewContext); } } if (Canonical == LHS) { if (isa(Canonical)) add(RHS, Constant::getNullValue(Ty), ICmpInst::ICMP_EQ, NewContext); } else if (isRelatedBy(LHS, Canonical, ICmpInst::ICMP_NE)) { add(RHS, Constant::getNullValue(Ty), ICmpInst::ICMP_NE, NewContext); } } break; default: break; } } else if (ICmpInst *IC = dyn_cast(I)) { // "icmp ult int %a, int %y" EQ true then %a u< y // etc. if (Canonical == ConstantInt::getTrue()) { add(IC->getOperand(0), IC->getOperand(1), IC->getPredicate(), NewContext); } else if (Canonical == ConstantInt::getFalse()) { add(IC->getOperand(0), IC->getOperand(1), ICmpInst::getInversePredicate(IC->getPredicate()), NewContext); } } else if (SelectInst *SI = dyn_cast(I)) { if (I->getType()->isFPOrFPVector()) return; // Given: "%a = select bool %x, int %b, int %c" // %a EQ %b and %b NE %c then %x EQ true // %a EQ %c and %b NE %c then %x EQ false Value *True = SI->getTrueValue(); Value *False = SI->getFalseValue(); if (isRelatedBy(True, False, ICmpInst::ICMP_NE)) { if (Canonical == IG.canonicalize(True, Top) || isRelatedBy(Canonical, False, ICmpInst::ICMP_NE)) add(SI->getCondition(), ConstantInt::getTrue(), ICmpInst::ICMP_EQ, NewContext); else if (Canonical == IG.canonicalize(False, Top) || isRelatedBy(I, True, ICmpInst::ICMP_NE)) add(SI->getCondition(), ConstantInt::getFalse(), ICmpInst::ICMP_EQ, NewContext); } } // TODO: CastInst "%a = cast ... %b" where %a is EQ or NE a constant. } /// opsToDef - A new relationship was discovered involving one of this /// instruction's operands. Find any new relationship involving the /// definition. void opsToDef(Instruction *I) { Instruction *NewContext = below(I) ? I : TopInst; if (BinaryOperator *BO = dyn_cast(I)) { Value *Op0 = IG.canonicalize(BO->getOperand(0), Top); Value *Op1 = IG.canonicalize(BO->getOperand(1), Top); if (ConstantInt *CI0 = dyn_cast(Op0)) if (ConstantInt *CI1 = dyn_cast(Op1)) { add(BO, ConstantExpr::get(BO->getOpcode(), CI0, CI1), ICmpInst::ICMP_EQ, NewContext); return; } // "%y = and bool true, %x" then %x EQ %y. // "%y = or bool false, %x" then %x EQ %y. if (BO->getOpcode() == Instruction::Or) { Constant *Zero = Constant::getNullValue(BO->getType()); if (Op0 == Zero) { add(BO, Op1, ICmpInst::ICMP_EQ, NewContext); return; } else if (Op1 == Zero) { add(BO, Op0, ICmpInst::ICMP_EQ, NewContext); return; } } else if (BO->getOpcode() == Instruction::And) { Constant *AllOnes = ConstantInt::getAllOnesValue(BO->getType()); if (Op0 == AllOnes) { add(BO, Op1, ICmpInst::ICMP_EQ, NewContext); return; } else if (Op1 == AllOnes) { add(BO, Op0, ICmpInst::ICMP_EQ, NewContext); return; } } // "%x = add int %y, %z" and %x EQ %y then %z EQ 0 // "%x = mul int %y, %z" and %x EQ %y then %z EQ 1 // 1. Repeat all of the above, with order of operands reversed. // "%x = udiv int %y, %z" and %x EQ %y then %z EQ 1 Value *Known = Op0, *Unknown = Op1; if (Known != BO) std::swap(Known, Unknown); if (Known == BO) { const Type *Ty = BO->getType(); assert(!Ty->isFPOrFPVector() && "Float in work queue!"); switch (BO->getOpcode()) { default: break; case Instruction::Xor: case Instruction::Or: case Instruction::Add: case Instruction::Sub: add(Unknown, Constant::getNullValue(Ty), ICmpInst::ICMP_EQ, NewContext); break; case Instruction::UDiv: case Instruction::SDiv: if (Unknown == Op0) break; // otherwise, fallthrough case Instruction::And: case Instruction::Mul: if (isa(Unknown)) { Constant *One = ConstantInt::get(Ty, 1); add(Unknown, One, ICmpInst::ICMP_EQ, NewContext); } break; } } // TODO: "%a = add int %b, 1" and %b > %z then %a >= %z. } else if (ICmpInst *IC = dyn_cast(I)) { // "%a = icmp ult %b, %c" and %b u< %c then %a EQ true // "%a = icmp ult %b, %c" and %b u>= %c then %a EQ false // etc. Value *Op0 = IG.canonicalize(IC->getOperand(0), Top); Value *Op1 = IG.canonicalize(IC->getOperand(1), Top); ICmpInst::Predicate Pred = IC->getPredicate(); if (isRelatedBy(Op0, Op1, Pred)) { add(IC, ConstantInt::getTrue(), ICmpInst::ICMP_EQ, NewContext); } else if (isRelatedBy(Op0, Op1, ICmpInst::getInversePredicate(Pred))) { add(IC, ConstantInt::getFalse(), ICmpInst::ICMP_EQ, NewContext); } // TODO: "bool %x s %y" implies %x = true and %y = false. // TODO: make the predicate more strict, if possible. } else if (SelectInst *SI = dyn_cast(I)) { // Given: "%a = select bool %x, int %b, int %c" // %x EQ true then %a EQ %b // %x EQ false then %a EQ %c // %b EQ %c then %a EQ %b Value *Canonical = IG.canonicalize(SI->getCondition(), Top); if (Canonical == ConstantInt::getTrue()) { add(SI, SI->getTrueValue(), ICmpInst::ICMP_EQ, NewContext); } else if (Canonical == ConstantInt::getFalse()) { add(SI, SI->getFalseValue(), ICmpInst::ICMP_EQ, NewContext); } else if (IG.canonicalize(SI->getTrueValue(), Top) == IG.canonicalize(SI->getFalseValue(), Top)) { add(SI, SI->getTrueValue(), ICmpInst::ICMP_EQ, NewContext); } } else if (CastInst *CI = dyn_cast(I)) { if (CI->getDestTy()->isFPOrFPVector()) return; if (Constant *C = dyn_cast( IG.canonicalize(CI->getOperand(0), Top))) { add(CI, ConstantExpr::getCast(CI->getOpcode(), C, CI->getDestTy()), ICmpInst::ICMP_EQ, NewContext); } // TODO: "%a = cast ... %b" where %b is NE/LT/GT a constant. } } /// solve - process the work queue /// Return false if a logical contradiction occurs. void solve() { //DOUT << "WorkList entry, size: " << WorkList.size() << "\n"; while (!WorkList.empty()) { //DOUT << "WorkList size: " << WorkList.size() << "\n"; Operation &O = WorkList.front(); TopInst = O.ContextInst; TopBB = O.ContextBB; Top = Forest->getNodeForBlock(TopBB); O.LHS = IG.canonicalize(O.LHS, Top); O.RHS = IG.canonicalize(O.RHS, Top); assert(O.LHS == IG.canonicalize(O.LHS, Top) && "Canonicalize isn't."); assert(O.RHS == IG.canonicalize(O.RHS, Top) && "Canonicalize isn't."); DOUT << "solving " << *O.LHS << " " << O.Op << " " << *O.RHS; if (O.ContextInst) DOUT << " context inst: " << *O.ContextInst; else DOUT << " context block: " << O.ContextBB->getName(); DOUT << "\n"; DEBUG(IG.dump()); // TODO: actually check the constants and add to UB. if (isa(O.LHS) && isa(O.RHS)) { WorkList.pop_front(); continue; } if (O.Op == ICmpInst::ICMP_EQ) { if (!makeEqual(O.LHS, O.RHS)) UB.mark(TopBB); } else { LatticeVal LV = cmpInstToLattice(O.Op); if ((LV & EQ_BIT) && isRelatedBy(O.LHS, O.RHS, ICmpInst::getSwappedPredicate(O.Op))) { if (!makeEqual(O.LHS, O.RHS)) UB.mark(TopBB); } else { if (isRelatedBy(O.LHS, O.RHS, ICmpInst::getInversePredicate(O.Op))){ DOUT << "inequality contradiction!\n"; WorkList.pop_front(); continue; } unsigned n1 = IG.getOrInsertNode(O.LHS, Top); unsigned n2 = IG.getOrInsertNode(O.RHS, Top); if (n1 == n2) { if (O.Op != ICmpInst::ICMP_UGE && O.Op != ICmpInst::ICMP_ULE && O.Op != ICmpInst::ICMP_SGE && O.Op != ICmpInst::ICMP_SLE) UB.mark(TopBB); WorkList.pop_front(); continue; } if (IG.isRelatedBy(n1, n2, Top, LV)) { WorkList.pop_front(); continue; } IG.addInequality(n1, n2, Top, LV); if (Instruction *I1 = dyn_cast(O.LHS)) defToOps(I1); if (isa(O.LHS) || isa(O.LHS)) { for (Value::use_iterator UI = O.LHS->use_begin(), UE = O.LHS->use_end(); UI != UE;) { Use &TheUse = UI.getUse(); ++UI; if (Instruction *I = dyn_cast(TheUse.getUser())) { opsToDef(I); } } } if (Instruction *I2 = dyn_cast(O.RHS)) defToOps(I2); if (isa(O.RHS) || isa(O.RHS)) { for (Value::use_iterator UI = O.RHS->use_begin(), UE = O.RHS->use_end(); UI != UE;) { Use &TheUse = UI.getUse(); ++UI; if (Instruction *I = dyn_cast(TheUse.getUser())) { opsToDef(I); } } } } } WorkList.pop_front(); } } }; /// PredicateSimplifier - This class is a simplifier that replaces /// one equivalent variable with another. It also tracks what /// can't be equal and will solve setcc instructions when possible. /// @brief Root of the predicate simplifier optimization. class VISIBILITY_HIDDEN PredicateSimplifier : public FunctionPass { DominatorTree *DT; ETForest *Forest; bool modified; InequalityGraph *IG; UnreachableBlocks UB; std::vector WorkList; public: bool runOnFunction(Function &F); virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequiredID(BreakCriticalEdgesID); AU.addRequired(); AU.addRequired(); } private: /// Forwards - Adds new properties into PropertySet and uses them to /// simplify instructions. Because new properties sometimes apply to /// a transition from one BasicBlock to another, this will use the /// PredicateSimplifier::proceedToSuccessor(s) interface to enter the /// basic block with the new PropertySet. /// @brief Performs abstract execution of the program. class VISIBILITY_HIDDEN Forwards : public InstVisitor { friend class InstVisitor; PredicateSimplifier *PS; DominatorTree::Node *DTNode; public: InequalityGraph &IG; UnreachableBlocks &UB; Forwards(PredicateSimplifier *PS, DominatorTree::Node *DTNode) : PS(PS), DTNode(DTNode), IG(*PS->IG), UB(PS->UB) {} void visitTerminatorInst(TerminatorInst &TI); void visitBranchInst(BranchInst &BI); void visitSwitchInst(SwitchInst &SI); void visitAllocaInst(AllocaInst &AI); void visitLoadInst(LoadInst &LI); void visitStoreInst(StoreInst &SI); void visitBinaryOperator(BinaryOperator &BO); }; // Used by terminator instructions to proceed from the current basic // block to the next. Verifies that "current" dominates "next", // then calls visitBasicBlock. void proceedToSuccessors(DominatorTree::Node *Current) { for (DominatorTree::Node::iterator I = Current->begin(), E = Current->end(); I != E; ++I) { WorkList.push_back(*I); } } void proceedToSuccessor(DominatorTree::Node *Next) { WorkList.push_back(Next); } // Visits each instruction in the basic block. void visitBasicBlock(DominatorTree::Node *Node) { BasicBlock *BB = Node->getBlock(); ETNode *ET = Forest->getNodeForBlock(BB); DOUT << "Entering Basic Block: " << BB->getName() << " (" << ET << ")\n"; for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { visitInstruction(I++, Node, ET); } } // Tries to simplify each Instruction and add new properties to // the PropertySet. void visitInstruction(Instruction *I, DominatorTree::Node *DT, ETNode *ET) { DOUT << "Considering instruction " << *I << "\n"; DEBUG(IG->dump()); // Sometimes instructions are killed in earlier analysis. if (isInstructionTriviallyDead(I)) { ++NumSimple; modified = true; IG->remove(I); I->eraseFromParent(); return; } #ifndef NDEBUG // Try to replace the whole instruction. Value *V = IG->canonicalize(I, ET); assert(V == I && "Late instruction canonicalization."); if (V != I) { modified = true; ++NumInstruction; DOUT << "Removing " << *I << ", replacing with " << *V << "\n"; IG->remove(I); I->replaceAllUsesWith(V); I->eraseFromParent(); return; } // Try to substitute operands. for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { Value *Oper = I->getOperand(i); Value *V = IG->canonicalize(Oper, ET); assert(V == Oper && "Late operand canonicalization."); if (V != Oper) { modified = true; ++NumVarsReplaced; DOUT << "Resolving " << *I; I->setOperand(i, V); DOUT << " into " << *I; } } #endif DOUT << "push (%" << I->getParent()->getName() << ")\n"; Forwards visit(this, DT); visit.visit(*I); DOUT << "pop (%" << I->getParent()->getName() << ")\n"; } }; bool PredicateSimplifier::runOnFunction(Function &F) { DT = &getAnalysis(); Forest = &getAnalysis(); Forest->updateDFSNumbers(); // XXX: should only act when numbers are out of date DOUT << "Entering Function: " << F.getName() << "\n"; modified = false; BasicBlock *RootBlock = &F.getEntryBlock(); IG = new InequalityGraph(Forest->getNodeForBlock(RootBlock)); WorkList.push_back(DT->getRootNode()); do { DominatorTree::Node *DTNode = WorkList.back(); WorkList.pop_back(); if (!UB.isDead(DTNode->getBlock())) visitBasicBlock(DTNode); } while (!WorkList.empty()); delete IG; modified |= UB.kill(); return modified; } void PredicateSimplifier::Forwards::visitTerminatorInst(TerminatorInst &TI) { PS->proceedToSuccessors(DTNode); } void PredicateSimplifier::Forwards::visitBranchInst(BranchInst &BI) { if (BI.isUnconditional()) { PS->proceedToSuccessors(DTNode); return; } Value *Condition = BI.getCondition(); BasicBlock *TrueDest = BI.getSuccessor(0); BasicBlock *FalseDest = BI.getSuccessor(1); if (isa(Condition) || TrueDest == FalseDest) { PS->proceedToSuccessors(DTNode); return; } for (DominatorTree::Node::iterator I = DTNode->begin(), E = DTNode->end(); I != E; ++I) { BasicBlock *Dest = (*I)->getBlock(); DOUT << "Branch thinking about %" << Dest->getName() << "(" << PS->Forest->getNodeForBlock(Dest) << ")\n"; if (Dest == TrueDest) { DOUT << "(" << DTNode->getBlock()->getName() << ") true set:\n"; VRPSolver VRP(IG, UB, PS->Forest, PS->modified, Dest); VRP.add(ConstantInt::getTrue(), Condition, ICmpInst::ICMP_EQ); VRP.solve(); DEBUG(IG.dump()); } else if (Dest == FalseDest) { DOUT << "(" << DTNode->getBlock()->getName() << ") false set:\n"; VRPSolver VRP(IG, UB, PS->Forest, PS->modified, Dest); VRP.add(ConstantInt::getFalse(), Condition, ICmpInst::ICMP_EQ); VRP.solve(); DEBUG(IG.dump()); } PS->proceedToSuccessor(*I); } } void PredicateSimplifier::Forwards::visitSwitchInst(SwitchInst &SI) { Value *Condition = SI.getCondition(); // Set the EQProperty in each of the cases BBs, and the NEProperties // in the default BB. for (DominatorTree::Node::iterator I = DTNode->begin(), E = DTNode->end(); I != E; ++I) { BasicBlock *BB = (*I)->getBlock(); DOUT << "Switch thinking about BB %" << BB->getName() << "(" << PS->Forest->getNodeForBlock(BB) << ")\n"; VRPSolver VRP(IG, UB, PS->Forest, PS->modified, BB); if (BB == SI.getDefaultDest()) { for (unsigned i = 1, e = SI.getNumCases(); i < e; ++i) if (SI.getSuccessor(i) != BB) VRP.add(Condition, SI.getCaseValue(i), ICmpInst::ICMP_NE); VRP.solve(); } else if (ConstantInt *CI = SI.findCaseDest(BB)) { VRP.add(Condition, CI, ICmpInst::ICMP_EQ); VRP.solve(); } PS->proceedToSuccessor(*I); } } void PredicateSimplifier::Forwards::visitAllocaInst(AllocaInst &AI) { VRPSolver VRP(IG, UB, PS->Forest, PS->modified, &AI); VRP.add(Constant::getNullValue(AI.getType()), &AI, ICmpInst::ICMP_NE); VRP.solve(); } void PredicateSimplifier::Forwards::visitLoadInst(LoadInst &LI) { Value *Ptr = LI.getPointerOperand(); // avoid "load uint* null" -> null NE null. if (isa(Ptr)) return; VRPSolver VRP(IG, UB, PS->Forest, PS->modified, &LI); VRP.add(Constant::getNullValue(Ptr->getType()), Ptr, ICmpInst::ICMP_NE); VRP.solve(); } void PredicateSimplifier::Forwards::visitStoreInst(StoreInst &SI) { Value *Ptr = SI.getPointerOperand(); if (isa(Ptr)) return; VRPSolver VRP(IG, UB, PS->Forest, PS->modified, &SI); VRP.add(Constant::getNullValue(Ptr->getType()), Ptr, ICmpInst::ICMP_NE); VRP.solve(); } void PredicateSimplifier::Forwards::visitBinaryOperator(BinaryOperator &BO) { Instruction::BinaryOps ops = BO.getOpcode(); switch (ops) { case Instruction::URem: case Instruction::SRem: case Instruction::UDiv: case Instruction::SDiv: { Value *Divisor = BO.getOperand(1); VRPSolver VRP(IG, UB, PS->Forest, PS->modified, &BO); VRP.add(Constant::getNullValue(Divisor->getType()), Divisor, ICmpInst::ICMP_NE); VRP.solve(); break; } default: break; } } RegisterPass X("predsimplify", "Predicate Simplifier"); } FunctionPass *llvm::createPredicateSimplifierPass() { return new PredicateSimplifier(); }