//===- MipsInstrInfo.td - Mips Register defs --------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by Bruno Cardoso Lopes and is distributed under the // University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Instruction format superclass //===----------------------------------------------------------------------===// include "MipsInstrFormats.td" //===----------------------------------------------------------------------===// // Mips profiles and nodes //===----------------------------------------------------------------------===// // Call def SDT_MipsJmpLink : SDTypeProfile<0, 1, [SDTCisVT<0, iPTR>]>; def MipsJmpLink : SDNode<"MipsISD::JmpLink",SDT_MipsJmpLink, [SDNPHasChain, SDNPOutFlag]>; // Hi and Lo nodes are created to let easy manipulation of 16-bit when // handling 32-bit immediates. They are used on MipsISelLowering to // lower stuff like GlobalAddress, ExternalSymbol, ... on static model // This two nodes have nothing to do with Mips Registers Hi and Lo. def MipsHi : SDNode<"MipsISD::Hi", SDTIntUnaryOp, [SDNPOutFlag]>; def MipsLo : SDNode<"MipsISD::Lo", SDTIntUnaryOp>; // Necessary to generate glued instructions when loading GlobalAddress // into registers. def MipsAdd : SDNode<"MipsISD::Add", SDTIntBinOp, [SDNPCommutative, SDNPAssociative, SDNPOptInFlag]>; // Used to Load Addresses on PIC code. def MipsLoadAddr: SDNode<"MipsISD::LoadAddr", SDTIntUnaryOp>; // Return def SDT_MipsRet : SDTypeProfile<0, 1, [SDTCisInt<0>]>; def MipsRet : SDNode<"MipsISD::Ret", SDT_MipsRet, [SDNPHasChain, SDNPOptInFlag]>; // These are target-independent nodes, but have target-specific formats. def SDT_MipsCallSeq : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>; def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_MipsCallSeq, [SDNPHasChain, SDNPOutFlag]>; def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_MipsCallSeq, [SDNPHasChain, SDNPOutFlag]>; //===----------------------------------------------------------------------===// // Mips Instruction Predicate Definitions. //===----------------------------------------------------------------------===// def IsStatic : Predicate<"TM.getRelocationModel() == Reloc::Static">; //===----------------------------------------------------------------------===// // Mips Operand, Complex Patterns and Transformations Definitions. //===----------------------------------------------------------------------===// // Instruction operand types def brtarget : Operand; def calltarget : Operand; def uimm16 : Operand; def simm16 : Operand; def shamt : Operand; def addrlabel : Operand; // Address operand def mem : Operand { let PrintMethod = "printMemOperand"; let MIOperandInfo = (ops simm16, CPURegs); } // Transformation Function - get the lower 16 bits. def LO16 : SDNodeXFormgetValue() & 0xFFFF); }]>; // Transformation Function - get the higher 16 bits. def HI16 : SDNodeXFormgetValue() >> 16); }]>; // Node immediate fits as 16-bit sign extended on target immediate. // e.g. addi, andi def immSExt16 : PatLeaf<(imm), [{ if (N->getValueType(0) == MVT::i32) return (int32_t)N->getValue() == (short)N->getValue(); else return (int64_t)N->getValue() == (short)N->getValue(); }]>; // Node immediate fits as 16-bit zero extended on target immediate. // The LO16 param means that only the lower 16 bits of the node // immediate are caught. // e.g. addiu, sltiu def immZExt16 : PatLeaf<(imm), [{ if (N->getValueType(0) == MVT::i32) return (uint32_t)N->getValue() == (unsigned short)N->getValue(); else return (uint64_t)N->getValue() == (unsigned short)N->getValue(); }], LO16>; // Node immediate fits as 32-bit zero extended on target immediate. //def immZExt32 : PatLeaf<(imm), [{ // return (uint64_t)N->getValue() == (uint32_t)N->getValue(); //}], LO16>; // shamt field must fit in 5 bits. def immZExt5 : PatLeaf<(imm), [{ return N->getValue() == ((N->getValue()) & 0x1f) ; }]>; // Mips Address Mode! SDNode frameindex could possibily be a match // since load and store instructions from stack used it. def addr : ComplexPattern; //===----------------------------------------------------------------------===// // Instructions specific format //===----------------------------------------------------------------------===// // Arithmetic 3 register operands let isCommutable = 1 in class ArithR op, bits<6> func, string instr_asm, SDNode OpNode, InstrItinClass itin>: FR< op, func, (outs CPURegs:$dst), (ins CPURegs:$b, CPURegs:$c), !strconcat(instr_asm, " $dst, $b, $c"), [(set CPURegs:$dst, (OpNode CPURegs:$b, CPURegs:$c))], itin>; let isCommutable = 1 in class ArithOverflowR op, bits<6> func, string instr_asm>: FR< op, func, (outs CPURegs:$dst), (ins CPURegs:$b, CPURegs:$c), !strconcat(instr_asm, " $dst, $b, $c"), [], IIAlu>; // Arithmetic 2 register operands let isCommutable = 1 in class ArithI op, string instr_asm, SDNode OpNode, Operand Od, PatLeaf imm_type> : FI< op, (outs CPURegs:$dst), (ins CPURegs:$b, Od:$c), !strconcat(instr_asm, " $dst, $b, $c"), [(set CPURegs:$dst, (OpNode CPURegs:$b, imm_type:$c))], IIAlu>; // Arithmetic Multiply ADD/SUB let rd=0 in class MArithR func, string instr_asm> : FR< 0x1c, func, (outs CPURegs:$rs), (ins CPURegs:$rt), !strconcat(instr_asm, " $rs, $rt"), [], IIImul>; // Logical class LogicR func, string instr_asm, SDNode OpNode>: FR< 0x00, func, (outs CPURegs:$dst), (ins CPURegs:$b, CPURegs:$c), !strconcat(instr_asm, " $dst, $b, $c"), [(set CPURegs:$dst, (OpNode CPURegs:$b, CPURegs:$c))], IIAlu>; class LogicI op, string instr_asm, SDNode OpNode>: FI< op, (outs CPURegs:$dst), (ins CPURegs:$b, uimm16:$c), !strconcat(instr_asm, " $dst, $b, $c"), [(set CPURegs:$dst, (OpNode CPURegs:$b, immSExt16:$c))], IIAlu>; class LogicNOR op, bits<6> func, string instr_asm>: FR< op, func, (outs CPURegs:$dst), (ins CPURegs:$b, CPURegs:$c), !strconcat(instr_asm, " $dst, $b, $c"), [(set CPURegs:$dst, (not (or CPURegs:$b, CPURegs:$c)))], IIAlu>; // Shifts let rt = 0 in class LogicR_shift_imm func, string instr_asm, SDNode OpNode>: FR< 0x00, func, (outs CPURegs:$dst), (ins CPURegs:$b, shamt:$c), !strconcat(instr_asm, " $dst, $b, $c"), [(set CPURegs:$dst, (OpNode CPURegs:$b, immZExt5:$c))], IIAlu>; class LogicR_shift_reg func, string instr_asm, SDNode OpNode>: FR< 0x00, func, (outs CPURegs:$dst), (ins CPURegs:$b, CPURegs:$c), !strconcat(instr_asm, " $dst, $b, $c"), [(set CPURegs:$dst, (OpNode CPURegs:$b, CPURegs:$c))], IIAlu>; // Load Upper Imediate class LoadUpper op, string instr_asm>: FI< op, (outs CPURegs:$dst), (ins uimm16:$imm), !strconcat(instr_asm, " $dst, $imm"), [], IIAlu>; // Memory Load/Store let isLoad = 1, hasDelaySlot = 1 in class LoadM op, string instr_asm, PatFrag OpNode>: FI< op, (outs CPURegs:$dst), (ins mem:$addr), !strconcat(instr_asm, " $dst, $addr"), [(set CPURegs:$dst, (OpNode addr:$addr))], IILoad>; let isStore = 1 in class StoreM op, string instr_asm, PatFrag OpNode>: FI< op, (outs), (ins CPURegs:$dst, mem:$addr), !strconcat(instr_asm, " $dst, $addr"), [(OpNode CPURegs:$dst, addr:$addr)], IIStore>; // Conditional Branch let isBranch = 1, isTerminator=1, hasDelaySlot = 1 in { class CBranch op, string instr_asm, PatFrag cond_op>: FI< op, (outs), (ins CPURegs:$a, CPURegs:$b, brtarget:$offset), !strconcat(instr_asm, " $a, $b, $offset"), [(brcond (cond_op CPURegs:$a, CPURegs:$b), bb:$offset)], IIBranch>; class CBranchZero op, string instr_asm, PatFrag cond_op>: FI< op, (outs), (ins CPURegs:$src, brtarget:$offset), !strconcat(instr_asm, " $src, $offset"), [(brcond (cond_op CPURegs:$src, 0), bb:$offset)], IIBranch>; } // SetCC class SetCC_R op, bits<6> func, string instr_asm, PatFrag cond_op>: FR< op, func, (outs CPURegs:$dst), (ins CPURegs:$b, CPURegs:$c), !strconcat(instr_asm, " $dst, $b, $c"), [(set CPURegs:$dst, (cond_op CPURegs:$b, CPURegs:$c))], IIAlu>; class SetCC_I op, string instr_asm, PatFrag cond_op, Operand Od, PatLeaf imm_type>: FI< op, (outs CPURegs:$dst), (ins CPURegs:$b, Od:$c), !strconcat(instr_asm, " $dst, $b, $c"), [(set CPURegs:$dst, (cond_op CPURegs:$b, imm_type:$c))], IIAlu>; // Unconditional branch let isBranch=1, isTerminator=1, isBarrier=1, hasDelaySlot = 1 in class JumpFJ op, string instr_asm>: FJ< op, (outs), (ins brtarget:$target), !strconcat(instr_asm, " $target"), [(br bb:$target)], IIBranch>; let isBranch=1, isTerminator=1, isBarrier=1, rd=0, hasDelaySlot = 1 in class JumpFR op, bits<6> func, string instr_asm>: FR< op, func, (outs), (ins CPURegs:$target), !strconcat(instr_asm, " $target"), [], IIBranch>; // Jump and Link (Call) let isCall=1, hasDelaySlot=1, // All calls clobber the non-callee saved registers... Defs = [AT, V0, V1, A0, A1, A2, A3, T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, K0, K1] in { class JumpLink op, string instr_asm>: FJ< op, (outs), (ins calltarget:$target), !strconcat(instr_asm, " $target"), [(MipsJmpLink imm:$target)], IIBranch>; let rd=31 in class JumpLinkReg op, bits<6> func, string instr_asm>: FR< op, func, (outs), (ins CPURegs:$rs), !strconcat(instr_asm, " $rs"), [(MipsJmpLink CPURegs:$rs)], IIBranch>; class BranchLink: FI< 0x1, (outs), (ins CPURegs:$rs, brtarget:$target), !strconcat(instr_asm, " $rs, $target"), [], IIBranch>; } // Mul, Div class MulDiv func, string instr_asm, InstrItinClass itin>: FR< 0x00, func, (outs), (ins CPURegs:$a, CPURegs:$b), !strconcat(instr_asm, " $a, $b"), [], itin>; // Move from Hi/Lo class MoveFromTo func, string instr_asm>: FR< 0x00, func, (outs CPURegs:$dst), (ins), !strconcat(instr_asm, " $dst"), [], IIHiLo>; // Count Leading Ones/Zeros in Word class CountLeading func, string instr_asm>: FR< 0x1c, func, (outs CPURegs:$dst), (ins CPURegs:$src), !strconcat(instr_asm, " $dst, $src"), [], IIAlu>; class EffectiveAddress : FI<0x09, (outs CPURegs:$dst), (ins mem:$addr), instr_asm, [(set CPURegs:$dst, addr:$addr)], IIAlu>; //===----------------------------------------------------------------------===// // Pseudo instructions //===----------------------------------------------------------------------===// // As stack alignment is always done with addiu, we need a 16-bit immediate let Defs = [SP], Uses = [SP] in { def ADJCALLSTACKDOWN : PseudoInstMips<(outs), (ins uimm16:$amt), "!ADJCALLSTACKDOWN $amt", [(callseq_start imm:$amt)]>; def ADJCALLSTACKUP : PseudoInstMips<(outs), (ins uimm16:$amt), "!ADJCALLSTACKUP $amt", [(callseq_end imm:$amt)]>; } def IMPLICIT_DEF_CPURegs : PseudoInstMips<(outs CPURegs:$dst), (ins), "!IMPLICIT_DEF $dst", [(set CPURegs:$dst, (undef))]>; // When handling PIC code the assembler needs .cpload and .cprestore // directives. If the real instructions corresponding these directives // are used, we have the same behavior, but get also a bunch of warnings // from the assembler. def CPLOAD: PseudoInstMips<(outs), (ins CPURegs:$reg), ".set noreorder\n\t.cpload $reg\n\t.set reorder", []>; def CPRESTORE: PseudoInstMips<(outs), (ins uimm16:$loc), ".cprestore $loc", []>; // Used on PIC code only, it loads the address of label into register reg. The // address is calculated from the global pointer ($gp) and is expanded by the // assembler into two instructions "lw" and "addiu". def LA: PseudoInstMips<(outs CPURegs:$dst), (ins addrlabel:$label), "la $dst, $label", []>; //===----------------------------------------------------------------------===// // Instruction definition //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // MipsI Instructions //===----------------------------------------------------------------------===// // Arithmetic // ADDiu just accept 16-bit immediates but we handle this on Pat's. // immZExt32 is used here so it can match GlobalAddress immediates. def ADDiu : ArithI<0x09, "addiu", MipsAdd, uimm16, immZExt16>; def ADDi : ArithI<0x08, "addi", add, simm16, immSExt16>; def MUL : ArithR<0x1c, 0x02, "mul", mul, IIImul>; def ADDu : ArithR<0x00, 0x21, "addu", add, IIAlu>; def SUBu : ArithR<0x00, 0x23, "subu", sub, IIAlu>; def ADD : ArithOverflowR<0x00, 0x20, "add">; def SUB : ArithOverflowR<0x00, 0x22, "sub">; def MADD : MArithR<0x00, "madd">; def MADDU : MArithR<0x01, "maddu">; def MSUB : MArithR<0x04, "msub">; def MSUBU : MArithR<0x05, "msubu">; // Logical def AND : LogicR<0x24, "and", and>; def OR : LogicR<0x25, "or", or>; def XOR : LogicR<0x26, "xor", xor>; def ANDi : LogicI<0x0c, "andi", and>; def ORi : LogicI<0x0d, "ori", or>; def XORi : LogicI<0x0e, "xori", xor>; def NOR : LogicNOR<0x00, 0x27, "nor">; // Shifts def SLL : LogicR_shift_imm<0x00, "sll", shl>; def SRL : LogicR_shift_imm<0x02, "srl", srl>; def SRA : LogicR_shift_imm<0x03, "sra", sra>; def SLLV : LogicR_shift_reg<0x04, "sllv", shl>; def SRLV : LogicR_shift_reg<0x06, "srlv", srl>; def SRAV : LogicR_shift_reg<0x07, "srav", sra>; // Load Upper Immediate def LUi : LoadUpper<0x0f, "lui">; // Load/Store def LB : LoadM<0x20, "lb", sextloadi8>; def LBu : LoadM<0x24, "lbu", zextloadi8>; def LH : LoadM<0x21, "lh", sextloadi16>; def LHu : LoadM<0x25, "lhu", zextloadi16>; def LW : LoadM<0x23, "lw", load>; def SB : StoreM<0x28, "sb", truncstorei8>; def SH : StoreM<0x29, "sh", truncstorei16>; def SW : StoreM<0x2b, "sw", store>; // Conditional Branch def BEQ : CBranch<0x04, "beq", seteq>; def BNE : CBranch<0x05, "bne", setne>; let rt=1 in def BGEZ : CBranchZero<0x01, "bgez", setge>; let rt=0 in { def BGTZ : CBranchZero<0x07, "bgtz", setgt>; def BLEZ : CBranchZero<0x07, "blez", setle>; def BLTZ : CBranchZero<0x01, "bltz", setlt>; } // Set Condition Code def SLT : SetCC_R<0x00, 0x2a, "slt", setlt>; def SLTu : SetCC_R<0x00, 0x2b, "sltu", setult>; def SLTi : SetCC_I<0x0a, "slti", setlt, simm16, immSExt16>; def SLTiu : SetCC_I<0x0b, "sltiu", setult, uimm16, immZExt16>; // Unconditional jump def J : JumpFJ<0x02, "j">; def JR : JumpFR<0x00, 0x08, "jr">; // Jump and Link (Call) def JAL : JumpLink<0x03, "jal">; def JALR : JumpLinkReg<0x00, 0x09, "jalr">; def BGEZAL : BranchLink<"bgezal">; def BLTZAL : BranchLink<"bltzal">; // MulDiv and Move From Hi/Lo operations, have // their correpondent SDNodes created on ISelDAG. // Special Mul, Div operations def MULT : MulDiv<0x18, "mult", IIImul>; def MULTu : MulDiv<0x19, "multu", IIImul>; def DIV : MulDiv<0x1a, "div", IIIdiv>; def DIVu : MulDiv<0x1b, "divu", IIIdiv>; // Move From Hi/Lo def MFHI : MoveFromTo<0x10, "mfhi">; def MFLO : MoveFromTo<0x12, "mflo">; def MTHI : MoveFromTo<0x11, "mthi">; def MTLO : MoveFromTo<0x13, "mtlo">; // Count Leading // CLO/CLZ are part of the newer MIPS32(tm) instruction // set and not older Mips I keep this for future use // though. //def CLO : CountLeading<0x21, "clo">; //def CLZ : CountLeading<0x20, "clz">; // No operation let addr=0 in def NOP : FJ<0, (outs), (ins), "nop", [], IIAlu>; // Ret instruction - as mips does not have "ret" a // jr $ra must be generated. let isReturn=1, isTerminator=1, hasDelaySlot=1, isBarrier=1, hasCtrlDep=1, rs=0, rt=0, shamt=0 in { def RET : FR <0x00, 0x02, (outs), (ins CPURegs:$target), "jr $target", [(MipsRet CPURegs:$target)], IIBranch>; } // FrameIndexes are legalized when they are operands from load/store // instructions. The same not happens for stack address copies, so an // add op with mem ComplexPattern is used and the stack address copy // can be matched. It's similar to Sparc LEA_ADDRi def LEA_ADDiu : EffectiveAddress<"addiu $dst, ${addr:stackloc}">; //===----------------------------------------------------------------------===// // Arbitrary patterns that map to one or more instructions //===----------------------------------------------------------------------===// // Small immediates def : Pat<(i32 immSExt16:$in), (ADDiu ZERO, imm:$in)>; def : Pat<(i32 immZExt16:$in), (ORi ZERO, imm:$in)>; // Arbitrary immediates def : Pat<(i32 imm:$imm), (ORi (LUi (HI16 imm:$imm)), (LO16 imm:$imm))>; // Call def : Pat<(MipsJmpLink (i32 tglobaladdr:$dst)), (JAL tglobaladdr:$dst)>; def : Pat<(MipsJmpLink (i32 texternalsym:$dst)), (JAL texternalsym:$dst)>; def : Pat<(MipsJmpLink CPURegs:$dst), (JALR CPURegs:$dst)>; // GlobalAddress, Constant Pool, ExternalSymbol, and JumpTable def : Pat<(MipsHi tglobaladdr:$in), (LUi tglobaladdr:$in)>; def : Pat<(MipsLo tglobaladdr:$in), (ADDiu ZERO, tglobaladdr:$in)>; def : Pat<(MipsAdd CPURegs:$hi, (MipsLo tglobaladdr:$lo)), (ADDiu CPURegs:$hi, tglobaladdr:$lo)>; def : Pat<(MipsLoadAddr tglobaladdr:$in), (LA tglobaladdr:$in)>; // Mips does not have not, so we increase the operation def : Pat<(not CPURegs:$in), (NOR CPURegs:$in, ZERO)>; // extended load and stores def : Pat<(i32 (extloadi1 addr:$src)), (LBu addr:$src)>; def : Pat<(i32 (extloadi8 addr:$src)), (LBu addr:$src)>; def : Pat<(i32 (extloadi16 addr:$src)), (LHu addr:$src)>; def : Pat<(truncstorei1 CPURegs:$src, addr:$addr), (SB CPURegs:$src, addr:$addr)>; /// /// brcond patterns /// // direct match equal/notequal zero branches def : Pat<(brcond (setne CPURegs:$lhs, 0), bb:$dst), (BNE CPURegs:$lhs, ZERO, bb:$dst)>; def : Pat<(brcond (seteq CPURegs:$lhs, 0), bb:$dst), (BEQ CPURegs:$lhs, ZERO, bb:$dst)>; def : Pat<(brcond (setge CPURegs:$lhs, CPURegs:$rhs), bb:$dst), (BGEZ (SUB CPURegs:$lhs, CPURegs:$rhs), bb:$dst)>; def : Pat<(brcond (setuge CPURegs:$lhs, CPURegs:$rhs), bb:$dst), (BGEZ (SUBu CPURegs:$lhs, CPURegs:$rhs), bb:$dst)>; def : Pat<(brcond (setgt CPURegs:$lhs, CPURegs:$rhs), bb:$dst), (BGTZ (SUB CPURegs:$lhs, CPURegs:$rhs), bb:$dst)>; def : Pat<(brcond (setugt CPURegs:$lhs, CPURegs:$rhs), bb:$dst), (BGTZ (SUBu CPURegs:$lhs, CPURegs:$rhs), bb:$dst)>; def : Pat<(brcond (setle CPURegs:$lhs, CPURegs:$rhs), bb:$dst), (BLEZ (SUB CPURegs:$lhs, CPURegs:$rhs), bb:$dst)>; def : Pat<(brcond (setule CPURegs:$lhs, CPURegs:$rhs), bb:$dst), (BLEZ (SUBu CPURegs:$lhs, CPURegs:$rhs), bb:$dst)>; def : Pat<(brcond (setlt CPURegs:$lhs, immSExt16:$rhs), bb:$dst), (BNE (SLTi CPURegs:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>; def : Pat<(brcond (setult CPURegs:$lhs, immZExt16:$rhs), bb:$dst), (BNE (SLTiu CPURegs:$lhs, immZExt16:$rhs), ZERO, bb:$dst)>; def : Pat<(brcond (setlt CPURegs:$lhs, CPURegs:$rhs), bb:$dst), (BNE (SLT CPURegs:$lhs, CPURegs:$rhs), ZERO, bb:$dst)>; def : Pat<(brcond (setult CPURegs:$lhs, CPURegs:$rhs), bb:$dst), (BNE (SLTu CPURegs:$lhs, CPURegs:$rhs), ZERO, bb:$dst)>; def : Pat<(brcond (setlt CPURegs:$lhs, CPURegs:$rhs), bb:$dst), (BLTZ (SUB CPURegs:$lhs, CPURegs:$rhs), bb:$dst)>; def : Pat<(brcond (setult CPURegs:$lhs, CPURegs:$rhs), bb:$dst), (BLTZ (SUBu CPURegs:$lhs, CPURegs:$rhs), bb:$dst)>; // generic brcond pattern def : Pat<(brcond CPURegs:$cond, bb:$dst), (BNE CPURegs:$cond, ZERO, bb:$dst)>; /// /// setcc patterns, only matched when there /// is no brcond following a setcc operation /// // setcc 2 register operands def : Pat<(setle CPURegs:$lhs, CPURegs:$rhs), (XORi (SLT CPURegs:$rhs, CPURegs:$lhs), 1)>; def : Pat<(setule CPURegs:$lhs, CPURegs:$rhs), (XORi (SLTu CPURegs:$rhs, CPURegs:$lhs), 1)>; def : Pat<(setgt CPURegs:$lhs, CPURegs:$rhs), (SLT CPURegs:$rhs, CPURegs:$lhs)>; def : Pat<(setugt CPURegs:$lhs, CPURegs:$rhs), (SLTu CPURegs:$rhs, CPURegs:$lhs)>; def : Pat<(setge CPURegs:$lhs, CPURegs:$rhs), (XORi (SLT CPURegs:$lhs, CPURegs:$rhs), 1)>; def : Pat<(setuge CPURegs:$lhs, CPURegs:$rhs), (XORi (SLTu CPURegs:$lhs, CPURegs:$rhs), 1)>; def : Pat<(setne CPURegs:$lhs, CPURegs:$rhs), (OR (SLT CPURegs:$lhs, CPURegs:$rhs), (SLT CPURegs:$rhs, CPURegs:$lhs))>; def : Pat<(seteq CPURegs:$lhs, CPURegs:$rhs), (XORi (OR (SLT CPURegs:$lhs, CPURegs:$rhs), (SLT CPURegs:$rhs, CPURegs:$lhs)), 1)>; // setcc reg/imm operands def : Pat<(setge CPURegs:$lhs, immSExt16:$rhs), (XORi (SLTi CPURegs:$lhs, immSExt16:$rhs), 1)>; def : Pat<(setuge CPURegs:$lhs, immZExt16:$rhs), (XORi (SLTiu CPURegs:$lhs, immZExt16:$rhs), 1)>;